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Abstract
Minimally invasive procedures rely on medical imaging instead of the surgeon’s direct vi-
sion. While preoperative images can be used for surgical planning and navigation, once
the surgeon arrives at the target site real-time intraoperative imaging is needed. However,
acquiring and interpreting these images can be challenging and much of the rich temporal
information present in these images is not visible. The goal of this thesis is to improve
image guidance for minimally invasive surgery in two main areas. First, by showing how
high-quality ultrasound video can be obtained by integrating an ultrasound transducer di-
rectly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden
temporal information through video processing methods to help the surgeon localize im-
portant anatomical structures.

Prototypes of delivery tools, with integrated ultrasound imaging, were developed for
both transcatheter aortic valve implantation and mitral valve repair. These tools provided
an on-site view that shows the tool-tissue interactions during valve repair. Additionally,
augmented reality environments were used to add more anatomical context that aids in
navigation and in interpreting the on-site video.

Other procedures can be improved by extracting hidden temporal information from the
intraoperative video. In ultrasound guided epidural injections, dural pulsation provides
a cue in finding a clear trajectory to the epidural space. By processing the video using
extended Kalman filtering, subtle pulsations were automatically detected and visualized
in real-time. A statistical framework for analyzing periodicity was developed based on dy-
namic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound,
this approach was used to image tissue perfusion in natural video and generate ventilation
maps from free-breathing magnetic resonance imaging. A second statistical method, based
on spectral analysis of pixel intensity values, allowed blood flow to be detected directly
from high-frequency B-mode ultrasound video.

Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video mag-
nification to help localize critical vasculature. This approach shows particular promise in
identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in
nerve-sparing prostatectomy. A real-time implementation was developed which processed
full-resolution stereoscopic video on the da Vinci Surgical System.

Keywords: Augmented reality, TAVI, mitral valve repair, dural pulsation, Kalman
filtering, state-space time series, dynamic linear modeling, Bartlett’s test, Eulerian video
magnification, nerve-sparing prostatectomy

ii



www.manaraa.com

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Terry Peters, for his
mentorship, friendship and support over all the years I have been working with him. I first
joined Terry’s lab as a summer student in high school in 2006. I have had the opportunity
to learn so much from Terry and the collaborative environment he encourages in the lab is
very special and enriching. Through these collaborations, I participated in many exciting
projects and gained a much broader understanding of the field. I have also greatly enjoyed
many summers of lab retreats and BBQs at his cottage. It has been an incredible journey.

I would also like thank my advisory committee Dr. Sandrine de Ribaupierre, Dr. Aaron
Ward and Dr. Louis Collins. Their guidance has been invaluable and I very much appreciate
all the time they have spent with me.

It has been a privilege to be able to work with surgeons and clinicians on the projects
in this thesis. The work would not have been possible without their insight, time and
expertise. I would like to thank Dr. Maria Currie, Dr. Bob Kiaii, Dr. Mike Chu and Dr.
Dan Bainbridge with whom I worked on image-guided cardiac interventions, Dr. Sugantha
Ganapathy on detecting dural pulsation for epidural injections and spinal anesthesia, Dr.
Sandrine de Ribaupierre on ETV and Dr. Stephen Pautler on nerve sparing prostatectomy.

I have also had the opportunity to collaborate with other groups at Robarts and would
like to acknowledge Dr. Matthew Lowerison, Dr. Hon Leong and Dr. James Lacefield
for our work together on microvascular segmentations from B-mode ultrasound and Dante
Capaldi and Dr. Grace Parraga for our work on using DLM for ventilation mapping from
free breathing MRI. While doing my PhD, I did a six month internship at Intuitive Surgical.
This was a fabulous experience. I would like to thank Dr. Mahdi Azzizian and Dr. Azad
Shademan for their guidance and friendship. I would like to thank everyone from Terry’s
lab and Imaging at Robarts, in particular, Dr. John Baxter, Dr. Mohammad Kayvanrad, Dr.
Pencilla Lang, Uditha Jayarathne, Golafsoun Ameri, Dr. Jonathan Lau, Dr. Martin Rajchl
and Dr. Xiongbiao Luo for many valuable discussions and collaborations that have made
this time so stimulating and fun. John Moore, Chris Wedlake and Dr. Elvis Chen, it has
been great working with you. Your input, advice and help have been invaluable.

Finally, I would like to thank my parents, Ian and Maree, my brother, Matthew, and my
grandparents for their love, support and encouragement. I am so grateful for everything
you have done for me.

This work has been supported by many sources of funding, including the National
Science and Engineering Council, Canadian Institute of Health Research, Canadian Foun-
dation for Innovation and Intuitive Surgical. Over the years, I have received scholarship
funding from the Vanier Graduate Scholarship Program, Natural Science and Engineering
Research Council and Ontario Graduate Scholarship Program.

iii



www.manaraa.com

Coauthorship Statement
Once again, I would like to thank all of my coauthors without whom I would not have been
able to accomplish the work described in this thesis. In all of the chapters and the papers on
which they were based, my supervisor, Dr. Peters, provided invaluable insight, mentorship
and guidance. The contributions of the other co-authors is summarized in this section.

Chapter 2: I developed the augmented reality guidance systems, performed the analysis
and wrote the papers. All authors contributed to editing the papers. In the TAVI project, Dr.
Maria Currie and I worked together on the specifications for the guidance system and plan-
ning the experiments. She also participated in the TAVI experiments. John Moore created
the phantoms for both the TAVI and Neochord project, did the computer aided design of
the NeoChord tool and provided general guidance and help with running the experiments.
Dr. Daniel Bainbridge, Dr. Bob Kiaii and Dr. Michael Chu provided insightful clinical
guidance.

Chapter 3: I developed the EKF method for detecting dural pulsation, designed the ex-
periments, performed the analysis and wrote the papers. All authors contributed to editing
the paper. Dr. Sugantha Ganapathy identified dural pulsation as a cue to enhance, acquired
the ultrasound videos and participated in the phantom experiments. Dr Elvis Chen created
the phantom and helped extend his augmented reality guidance system to include the dural
pulsatile cues as seen in Section 3.4.1. Dr. John Baxter and Golafsoun Ameri contributed
many fruitful discussions and assisted in running the experiments.

Chapter 4: I developed the DLM method for analysing periodicity in image sequences. I
collected and analysed the natural video examples and applied this method to the ultrasound
data from Chapter 3. Dante Capolti proposed applying this method to FDMRI and Dr.
Grace Parraga provided the MRI data for this final example. Dr. John Baxter contributed
many suggestions and discussions and assisted in preparing this work for publication. Dr.
Xiongbiao Luo provided valuable discussions and feedback.

Chapter 5: I developed the B-mode blood segmentation method, designed and analysed
the experiments and wrote the paper. Dr. Mattew Lowerison suggested we look into pro-
cessing blood flow from B-mode ultrasound and collected the data, including the ground
truth segmentations. I had many valuable discussions and a productive collaboration with
him on this project. Dr. Mai Elfarnawany provided the code and expertise for the conven-
tional Doppler processing. Ashley Makela tuned the ultrasound acquisition parameters. I
also received valuable feedback and guidance from Dr. Hon Leong and Dr. James Lace-
field. Dr. Leong provided the chick embryo models used in this study and Dr. Lacefield
provided guidance and insight into blood flow measurements and high frequency ultra-
sound.

Chapter 6: I implemented EVM and developed techniques for artifact reduction and wrote
the papers. Dr. Sandrine de Ribaupierre provided the ETV videos and clinical feedback.

iv



www.manaraa.com

Dr. Stephen Pautler provided the prostatectomy videos and identified the stages in the
surgery where this technique could be most useful. Uditha Jayarathne and I collected the
prostatectomy videos together. I had many fruitful discussions with Dr. John Baxter who
helped in preparing these papers. Dr. Xiongbiao Luo also provided valuable discussions
and feedback.

v



www.manaraa.com

Contents

Abstract ii

Acknowledgments iii

Coauthorship Statement iv

List of Figures x

List of Tables xii

List of Abbreviations, Symbols, and Nomenclature xiii

1 Introduction 1
1.1 Image-Guided Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Preoperative Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 6
Volumetric Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Tissue Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functional Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Tracking Technologies . . . . . . . . . . . . . . . . . . . . . . . . 8
Optical Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Magnetic Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Intraoperative Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Endoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Fluoroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Cone Beam Computed Tomography . . . . . . . . . . . . . . . . . 11

1.3 Augmented Reality Environments . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Milgram’s Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Display Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



www.manaraa.com

1.5.1 Chapter 2: Ultrasound Guidance for Beating Heart Cardiac Surgery 15
1.5.2 Chapter 3: Detection and Visualization of Dural Pulsation . . . . . 15
1.5.3 Chapter 4: Analysis of Periodicity in Video Sequences through Dy-

namic Linear Modeling . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.4 Chapter 5: Microvasculature Segmentation from B-mode Ultra-

sound Video Sequences . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.5 Chapter 6: Motion Magnification for Endoscopic Surgery . . . . . . 17

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Ultrasound Guidance for Beating Heart Cardiac Surgery 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Transcatheter Aortic Valve Implantation . . . . . . . . . . . . . . . . . . . 30

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Delivery Tool with Integrated ICE . . . . . . . . . . . . . . . . . . 34
Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Surrogate Stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Valve Deployment Experiments . . . . . . . . . . . . . . . . . . . 38
Fluoroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Augmented Reality with ICE . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 45
Surgical Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Mitral Valve Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Device Modification . . . . . . . . . . . . . . . . . . . . . . . . . 48
Ultrasound Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Phantom Environment . . . . . . . . . . . . . . . . . . . . . . . . 51
Neochordae Implantation . . . . . . . . . . . . . . . . . . . . . . . 52
Integrated ICE Guidance . . . . . . . . . . . . . . . . . . . . . . . 53
TEE Only Guidance . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Bite Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Implant Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



www.manaraa.com

3 Detection and Visualization of Dural Pulsation 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.1 Extended Kalman Filtering Model . . . . . . . . . . . . . . . . . . 70
3.2.2 Frequency Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Synthetic Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Human Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.3 Interventional Phantom . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4.1 Augmented Reality Environment . . . . . . . . . . . . . . . . . . . 84

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Analysis of Periodicity through DLM 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Dynamic Linear Models . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 Natural Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.3 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Microvasculature Segmentation from B-mode Ultrasound 104
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Bartlett’s Cumulative Periodogram Test . . . . . . . . . . . . . . . 107
5.2.2 Blood-flow Segmentation from B-mode Video Sequences . . . . . . 108
5.2.3 Vessel Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.4 Tumor Xenografts . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.5 Doppler Decluttering using B-mode Data . . . . . . . . . . . . . . 113

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.1 Vessel Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Tumor Xenografts . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.3 Doppler Decluttering using B-mode Data . . . . . . . . . . . . . . 116

viii



www.manaraa.com

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Motion Magnification for Endoscopic Surgery 123
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Eulerian Video Magnification . . . . . . . . . . . . . . . . . . . . . . . . . 125

Laplacian Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Spatiotemporal Filtering . . . . . . . . . . . . . . . . . . . . . . . 130
Artifact Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Endoscopic Third Ventriculostomy . . . . . . . . . . . . . . . . . . 137
Robotic Prostatectomy . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.1 Identification of Prostatic Artery in Robotic Prostatectomy . . . . . 138
6.3.2 Stereo Endoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.3 Real-Time Local Phase Processing . . . . . . . . . . . . . . . . . . 141

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Conclusions 148

A Ethics Approval Notices 152

B Permission to Reproduce Copyrighted Material 156

Curriculum Vitae 160

ix



www.manaraa.com

List of Figures

1.1 Stereotactic deep brain stimulation . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fluoroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Milgram’s Virtuality Continuum . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Magnetic tracking and calibration of TAVI catheter . . . . . . . . . . . . . 33
2.2 Augmented reality TAVI guidance . . . . . . . . . . . . . . . . . . . . . . 34
2.3 TAVI delivery tool with integrated ultrasound . . . . . . . . . . . . . . . . 35
2.4 Phantom for mock TAVI procedures . . . . . . . . . . . . . . . . . . . . . 37
2.5 Surrogate stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Measuring deployment depth in TAVI experiments . . . . . . . . . . . . . . 39
2.7 Fluoroscopic guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8 Integrated ICE imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Distribution of deployment depths by guidance type . . . . . . . . . . . . . 44
2.10 Modified NeoChord DS-1000 with integrated ICE imaging . . . . . . . . . 49
2.11 3D TEE and integrated ICE imaging during leaflet capture . . . . . . . . . 50
2.12 Augmented reality guidance for NeoChord with on-site ICE . . . . . . . . . 51
2.13 Mitral valve repair phantom . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.14 Neochordae implantation results . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 EKF peridoicity detection in synthetic video . . . . . . . . . . . . . . . . . 74
3.2 Retrospective analysis of dural pulsation in human ultrasound . . . . . . . . 76
3.3 State evolution in quasiperiodic EKF model . . . . . . . . . . . . . . . . . 77
3.4 Comparison of EKF and Fourier method for periodicity detection . . . . . . 78
3.5 Amplitude spectrum of dural pulsation . . . . . . . . . . . . . . . . . . . . 78
3.6 Spine phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.7 Real-time periodicity detection on phantom . . . . . . . . . . . . . . . . . 81
3.8 Normalized path length for mock epidural injections . . . . . . . . . . . . . 82
3.9 Number of attempts for mock epidural injections . . . . . . . . . . . . . . 82
3.10 Time required for mock epidural injections . . . . . . . . . . . . . . . . . . 83
3.11 Detetection of dural pulsation in an AR environment . . . . . . . . . . . . 85

x



www.manaraa.com

4.1 Numerical simulations of DLM spectrum and convergence parameter esti-
mates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Extracting PPG signal from video of the human palm . . . . . . . . . . . . 98
4.3 PPG perfusion imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 DLM for detection of dural pulsation . . . . . . . . . . . . . . . . . . . . . 100
4.5 Ventilation imaging through DLM analysis of free breathing MRI . . . . . . 101

5.1 Cumulative periodogram and Bartlett’s test statistic . . . . . . . . . . . . . 109
5.2 Foreground background separation using Bartlett’s test . . . . . . . . . . . 110
5.3 ROC Analysis of CAM Vessel Images . . . . . . . . . . . . . . . . . . . . 115
5.4 CAM Vessel Segmentations . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Tumor Xenograft Microvasculature . . . . . . . . . . . . . . . . . . . . . . 118
5.6 Doppler with B-mode Decluttering . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Image pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Laplacian pyramid processing for EVM . . . . . . . . . . . . . . . . . . . 128
6.3 Laplacian pyramids and spatial filtering . . . . . . . . . . . . . . . . . . . 129
6.4 EVM with Adaptive Temporal Filtering and Artifact Reduction . . . . . . . 130
6.5 Adaptive IIR bandpass filtering . . . . . . . . . . . . . . . . . . . . . . . . 131
6.6 Frequency estimation and amplification of periodic signals . . . . . . . . . 133
6.7 Artifact Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.8 Motion magnification of basilar artery . . . . . . . . . . . . . . . . . . . . 138
6.9 Motion magnification of the neurvascular area in radical prostatectomy . . . 139
6.10 Real-time motion magnification . . . . . . . . . . . . . . . . . . . . . . . . 144

xi



www.manaraa.com

List of Tables

2.1 Deployment depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 NeoChord bite depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 NeoChord implant spacing . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Numerical results for mock epidural injections . . . . . . . . . . . . . . . . 83

4.1 Heart rate estimated from the eight video clips (bpm) . . . . . . . . . . . . 97

6.1 Parameters for motion magnification . . . . . . . . . . . . . . . . . . . . . 136

xii



www.manaraa.com

List of Abbreviations, Symbols, and Nomenclature

2D: two dimensional
3D: three dimensional
AR: augmented reality
AUC: area under curve
AV: aortic valve
bpm: beats per minute
CAM: chorioallantoic membrane
CPD: color pixel density
CT: computed tomography
DLM: dynamic linear models
DOF: degrees of freedom
EKF: extended Kalman filter
EKG: electrocardiogram
EMA: exponential moving average
ETV: endoscopic third ventriculostomy
EVM: Eulerian video magnification
FDMRI: Fourier decomposition magnetic resonance imaging
FPR: false positive rate
fps: frames per second
GPU: graphics processing unit
ICE: intracardiac echocardiography
IQ: quadrature demodulated
MLE: maximum likelihood estimate
MRI: magnetic resonance imaging
MV: mitral valve
PPG: photoplethysmogram
QPI: quadratic peak interpolation
RMSE: root mean square error
ROC: receiver operating characteristic
ROI: region of interest
SNR: signal to noise ratio
TAVI: transcatheter aortic valve implantation
TEE: transesophogeal echocardiography
TPR: true positive rate
US: ultrasound
VEGF: vascular endothelial growth factor

xiii



www.manaraa.com

Chapter 1

Introduction

Surgery is an invasive but necessary course of treatment for many patients, accounting for

1.4 million of the 3.0 million annual inpatient hospitalizations in Canada[1]. Much of the

trauma and complications associated with open surgery is caused by gaining access to tis-

sue deep within the body. Minimally invasive procedures can reduce these side-effects by

keeping the patient closed and operating through small keyhole insertions [2, 3, 4], percu-

taneously [5, 6, 7, 8] or through the patient’s natural orifices [9]. However, without open

surgical access the surgeons are forced to rely on medical imaging to guide the procedure

as they no longer have direct visual access inside the patient.

Historically, minimally invasive procedures have addressed this challenge in two main

ways. Traditional image-guided interventions (IGI) had their origins in stereotactic neuro-

surgery where computed tomographic imaging allowed the position tracked surgical tools

to be displayed relative to preoperative images of the patient’s anatomy. As the images

were acquired before the surgery began, only the position of the surgical tools can be up-

dated intraoperatively. This approach is well suited to situations where the target tissue is

relatively stationary and, once the target site is reached, the surgical procedure is simple.

1
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Other minimally invasive procedures rely on intraoperative imaging to visualize both

the patient’s anatomy and surgical tools. Since the images are acquired live, tissue motion

is not so much of a problem and more complex surgical tasks can be performed, such as

laparoscopic suturing or catheter stent deployments. However, the type and quality of the

images are limited by the constraints of the operating room environment and the need for

real-time feedback.

Increasingly, minimally invasive procedures seek to combine preoperative images, which

can take advantage of the tissue contrast and high-resolution attainable in diagnostic scans,

with intraoperative imaging to provide real-time feedback during surgery. For instance,

SonoWand is a neuronavigation system that includes intraoperative ultrasound. Both real-

time 2D ultrasound and free-hand 3D reconstructions can be acquired intraoperatively

[10, 11]. The 3D ultrasound has proved particularly useful for tumor resections where

large amounts of brain shift can occur as the surgery progresses. Continuous fluoroscopy

is frequently used in deep brain stimulation to monitor lead placement (Figure 1.1). This

real-time imaging is used to prevent electrode tip migration and detect intracranial hemor-

rhaging [12].

On the other hand, procedures that rely primarily on intraoperative imaging are seek-

ing to augment the real-time video with more spatial context and anatomical knowledge

derived from preoperative imaging. In minimally invasive cardiac surgery, preoperative

CT volumes can be registered to intraoperative fluoroscopy [13] or ultrasound [14, 15]

to help identify important anatomy and reduce the use of nephrotoxic contrast agents for

fluoroscopy. Endoscopic video can also be augmented with peroperative data to show in-

formation that would otherwise be invisible to the surgeon. This includes tumors [16, 17]

and critical vasculature [17, 18, 19] and nerves [19].
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Figure 1.1: Stereotactic deep brain stimulation with real-time fluoroscopic imaging. The
centre of the stereotactic frame is aligned with the surgical target, ie globus pallidus. As
the leads are placed, continous fluoroscopy is acquired with the C-arm.

The goal of this thesis is to improve real-time image guidance for minimally invasive

surgery in two main areas. Firstly, by developed surgical tools with integrated ultrasound

imaging to provide feedback for monitoring tool-tissue interactions during beating heart

surgery. Secondly, by extracting hidden temporal information from intraoperative video

that can be used to localize arteries as well as other vasculature and important structures.

1.1 Image-Guided Surgery

Image-guided surgery emerged as a field approximately 30 years ago when newly devel-

oped computed tomography (CT), in combination with stereotaxy, was used to visualize

target tissue deep within the patient’s brain. Neurosurgery was particularly well suited to

image guidance for a number of reasons:
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• Static environment: Brain tissue is relatively stationary allowing preoperative im-

ages acquired well before the surgery to be used for intraoperative guidance. Al-

though some brain shift occurs during surgery due to the loss of cerebral spinal fluid,

this displacement is most prevalent at the cortical surface and is less significant for

deep brain targets [20].

• Rigid skull: The patient’s skull provides landmarks and a solid base needed to affix

the stereotactic frame. It also allows for stable skin markers and natural landmarks on

the patient’s head to be used for registration with frameless neuronavigation systems.

• Non-regenerative tissue: By necessity, neurosurgery must be minimally invasive.

Damage to eloquent regions of the brain can result in severe and irreversible side-

effects. Since there is no open surgical alternative to accessing targets deep within

the brain, direct vision is impossible and surgeons must rely on imaging or their

anatomical knowledge to reach these targets.

• Simple surgical objectives: Dramatic functional changes in the brain can be achieved

by removing or ablating small amounts of tissue, or through implanting electrodes.

Once the target site is reached, these tasks are relatively simple to perform and can

often be performed without additional imaging.

After the initial success in neurosurgery, other surgical and non-surgical procedures

adopted similar guidance. The same fundamental problem of bringing the preoperative

images of the patient and tracked surgical tools (or other interventional devices) into a

common coordinate system occurs in many other fields including orthopedic surgery [21,

22], percutaneous interventions [23], and radiation therapy [24]. Galloway and Peters [25]

divided image guided interventions into five subprocesses.



www.manaraa.com

1.1. Image-Guided Surgery 5

1 Collect preoperative data: The first step in image-guided interventions is to acquire

the preoperative images that will be used for guidance.

2 Track surgical tools: The location of the surgical instruments must be tracked. This

is usually accomplished using either mechanical, optical or magnetic systems.

3 Register tracking system, preoperative data and patient into common coordi-

nate system: The preoperative images and tracking system need to be registered to

the patient. This is typically accomplished by identifying homologous landmarks on

the preoperative images (in image space) and on the patient (in tracker space).

4 Display position of the tool relative to structures visible in preoperative data:

The position of the tool is visualized relative to preoperative data to guide the surgeon

to the target.

5 Account for differences between preoperative data and intraoperative reality:

After registration, there will still be some residual error. As the surgery progresses

larger errors may be introduced and need to be corrected.

This paradigm for image-guided interventions seeks to maintain up-to-date locations of

the surgical tools within a mostly static reference image. This is accomplished in the first

four subprocesses where preoperative images are acquired, registered into a common co-

ordinate system with the patient and tracked surgical tools, and displayed to the surgeon.

Here, the only real-time feedback provided to the surgeon is through updating the location

of the tracked tools. The fifth subprocess attempts to correct for differences between the

preopertive data and reality and usually consists of using intraoperative imaging, such as

ultrasound, to update the registration [26] or acquiring a new image volume intraoperatively
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to serve as the reference [10, 27]. This type of image guidance works very well for navigat-

ing to a target site. However, once the target site is reached the guidance system offers little

help in positioning or manipulating the tools to accomplish complex surgical tasks. Mod-

ern navigation systems are accurate to 3mm after initial registration and become worse as

the surgery progresses [28]. This level of accuracy is sufficient for positioning an electrode

within the right anatomical region, such as the globus pallidus or subthalamus, but not for

achieving satisfactory margins during tumor resection. In addition, the lack of real-time

image feedback to monitor tool-tissue interactions limit the surgeon to performing only the

most simple actions once the target site is reached.

1.1.1 Preoperative Imaging

One of the advantages of image-guided interventions is the ability to use a wealth of dif-

ferent imaging technologies to reveal more information than would otherwise be visible to

the surgeon. Preoperative imaging is typically performed in a diagnostic imaging suite well

in advance of the actual surgery. Traditional diagnostic modalities such as CT, magnetic

resonance imaging (MRI) and nuclear medicine are used to acquire detailed structural and

functional information to help guide the surgery.

Volumetric Imaging

Preoperative images must cover the entire surgical volume so the tracked tools can be re-

lated to the patient’s anatomy as the procedure progresses. The first human stereotactic sys-

tem developed by Spiegel et al. [29], preceded the development of volumetric imaging and

instead used two orthogonal x-ray projection images so that the coordinates of anatomical

landmarks visible in both images could be calculated and used during navigation. Later, CT
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enabled the reconstruction of full image volumes from multiple x-ray projections. When

used in a navigation system, the position of the tracked tools could be shown precisely in

the patient’s anatomy. Other modalities, including MRI, nuclear medicine, and ultrasound

can all produce volumetric images used for image-guided surgery.

Tissue Contrast

The images used for IGI need to show the important anatomical structures to the surgeon.

CT images are formed based on the x-ray attenuation of the tissue being imaged. While

these images provide excellent contrast between bone, soft-tissue and air, distinguishing

between different types of soft tissue is challenging. In CT angiography, high contrast

between vasculature and surrounding tissue is obtained by administering an intravenous

radiopaque contrast agent. These images are frequently used for image-guidance in cardiac

interventions[30] and neurosurgery[31]. However, one of the great strengths of MRI is its

ability to obtain good soft tissue contrast. The pulse sequence of the MRI scan determines

how the magnetic relaxation properties of hydrogen atoms in the tissue contribute to the

final image and can be tuned to suit the desired application.

Functional Imaging

Besides obtaining structural information, preoperative imaging techniques have been de-

veloped to measure functional properties of tissue. This can provide important information

that would otherwise be invisible to the surgeon. Functional MRI measures changes in

blood oxygenation as a proxy for brain activity. Eloquent areas of the brain can be identi-

fied preoperatively and loaded into the neuronavigation system to help protect the patient’s

language, vision and motor function [32, 33]. Positron emission tomography can localize
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tumors by imaging their high glucose metabolism. These images can then be used to guide

minimally invasive surgery [34] and radiation therapy [35] in cancer patients.

1.1.2 Tracking Technologies

In stereotactic surgery the reference coordinate system is set by the stereotactic frame which

is rigidly affixed to the patient’s skull. Frameless neurosurgery, and most non-neurosurgical

applications of IGI use either magnetic or optical tracking to track the location of the sur-

gical tools.

Optical Tracking

Optical tracking systems use cameras to triangulate the position of fiducials mounted on

the surgical tools. Active tracking systems use a series of infrared LEDs mounted on the

surgical tool. These LEDs are pulsed one at a time so they can be uniquely identified by at

least two cameras. Passive systems replace the LEDs with highly reflective spheres while

an infrared light source mounted in the tracking system illuminates the scene. Since all the

fiducials are imaged simultaneously they must be identified from their spatial configuration

on the surgical tools. Videometric systems extract the location of fiducials by processing

images of an easily recognizable pattern, such as a checkerboard. Optical tracking systems

can achieve a very high degree of accuracy, with tracking errors of approximately 0.25mm

[36]. However, they require a clear line of sight between the tracking system and the

fiducials mounted on the tools. This can be encumbering in the operating room environment

and is impossible to achieve with non-rigid tools once they are inserted into the patient.
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Magnetic Tracking

Magnetic tracking uses a field generator to induce current in small solenoids mounted on

the surgical tools. These systems do not require a direct line of sight, and the sensor, 1-

2mm in diameter, can easily be integrated into surgical tools. However, the volume over

which tools can be tracked is smaller than optical systems, requiring the field generator to

be placed near the patient. Furthermore, metal objects interfere with tracking accuracy.

1.2 Intraoperative Imaging

Endoscopy, fluoroscopy and ultrasound are all routinely used in minimally invasive inter-

ventions to provide real-time image feedback replacing the surgeon’s direct vision.

1.2.1 Endoscopy

The first diagnostic and interventional endoscopes required the clinician to look through the

eyepiece of an optical device. First analog and then digital cameras removed this constraint

by acquiring video feed which was displayed on a monitor in the operating room [37]. This

provided the rest of the operating room staff with an endoscopic view and freed the surgeon

from having to peer through the eyepiece.

1.2.2 Fluoroscopy

In fluoroscopy, x-ray images are acquired and displayed to the clinician in real-time. Origi-

nally, this was accomplished using a screen that fluoresced when exposed to x-ray radiation

(Figure 1.2). These screens could be handheld or head-mounted; however, they required
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Figure 1.2: A surgeon extracts a bullet under fluoroscopic guidance at an army hospital
in France during the first world war. Credit: The Book of Modern Marvels, Leslie-Judge
Company, 1917 - Digitized by Google Books

large doses of continuous x-ray radiation to produce faint images on the display. Fluo-

roscopy now uses the same flat panel detectors used in x-ray and cone-beam CT systems,

which are usually capable of acquiring intraoperative real-time fluoroscopy.

1.2.3 Ultrasound

Ultrasound is an attractive modality for intraoperative imaging. When compared with CT

and MRI systems, ultrasound scanners are compact and can easily be integrated into the

operating room environment and surgical workflow. To form an image, the piezoelectric

transducer transmits ultrasonic pulses which are then reflected back wherever there is a

change in acoustic impedance. This occurs both on the interface between different tissue

types, such as the interface between bone and softer tissues, and due to small scatterers

within tissue, such as erythrocytes in blood. The ultrasound image is reconstructed based
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on the speed of sound, and the time elapsed before the echos are received. Typically 2D

B-mode ultrasound is used for guiding interventions [38]. However, 3D ultrasound re-

constructed from freehand B-mode scans [10], as well as real-time 3D imaging through a

matrix phased array probe [39], are also used intraoperatively.

1.2.4 Magnetic Resonance Imaging

MRI is difficult to integrate into surgical workflow since it usually requires a specialized op-

erating room with electro-magnetic shielding and specialized, non-metallic, surgical beds,

tools, and other devices. In addition, the small bore of diagnostic scanners greatly limit

the surgeon’s access to the patient. Some specialized open bore MRI systems have been

developed to allow greater access to the patient. However, field strength and homogeneity

are lower, reducing image quality in these systems. To maintain image quality, closed bore,

rail mounted MRI systems have been developed so that updated images can be acquired

intraoperatively [27]. Another class of non-surgical interventions can be performed inside

the bore of a conventional MRI scanner, including percutaneous needle interventions [40],

cardiac catheter procedures [41] and high intensity focused ultrasound ablations [42, 43].

1.2.5 Cone Beam Computed Tomography

Cone beam CT uses a flat panel detector and x-ray source mounted on a rotational gantry,

often called a C-arm due to its shape, to reconstruct 3D volumes from a series of 2D pro-

jection images. This enables fast acquisitions of the entire volume with a single rotation of

the gantry. In addition, cone beam CT systems can also be used to acquire real-time flu-

oroscopy enabling a seamless workflow where the perioperatively acquired CT volume is

inherently registered to live fluoroscopy. In TAVI (transcatheter aortic valve implantation)
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procedures using the DynaCT, first a 3D volume showing the anatomy of the aortic root is

acquired before switching to fluoroscopy to guide valve deployment [44, 45].

1.3 Augmented Reality Environments

Broadly speaking, augmented reality environments combine real and virtual objects and

images. In medical interventions, such environments can be used to fuse spatial and tempo-

ral information from many different sources, including preoperative imaging, intraoperative

imaging, and tool tracking data.

1.3.1 Milgram’s Taxonomy

The term, augmented reality, has been used to describe a wide range of environments.

Milgram proposed a taxonomy for describing display environments that include mixtures of

virtual and real objects and images [46]. These environments were placed on a continuum

(Figure 1.3) from entirely real environments to entirely virtual. The term mixed reality is

used to refer to all systems with a mixture of real and virtual elements and a distinction

is made between augmented reality, where reality is augmented with virtual objects and

augmented virtuality, where the environment is primarily virtual but includes some real

images or objects. However, this distinction is often blurred in systems that use extensive

virtual models with a difficult to interpret imaging modality, such as ultrasound. The terms

augmented reality [47, 48], mixed reality [49] and augmented virtuality [50] are all used

in the literature to refer to systems displaying real-time tracked ultrasound together with

virtual representations of tracked tools and important anatomical structures.
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Figure 1.3: Milgram’s virtuality continuum categorizes different display environments
based on their mixture of real and virtual objects.

1.3.2 Display Strategies

The augmented reality environment needs to display real and virtual information to the

surgeon. One strategy is to display images and virtual objects directly onto the patient.

This can be accomplished using head-mounted displays [51], half silvered mirrors [52], or

by projecting graphics directly onto the patient [53]. Alternatively, an auxiliary monitor

can introduced to the operating room to bring all the elements of the augmented reality

environment into a single display. Finally, when the surgery is performed primarily using

intraoperative imaging, as is the case for many endoscopic and fluoroscopic procedures,

virtual elements can be overlayed on this video without requiring additional displays or

otherwise changing the surgical workflow.

1.4 Research Challenges

Modern minimally invasive interventions rely increasingly on intraoperative imaging to

perform more sophisticated surgical tasks without the need for open surgery. However, the

type and quality of this imaging is often limited by the constraints of the operating room

environment. This thesis aims to improve guidance for minimally invasive surgery in two

main areas:
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1 Using intraoperative ultrasound to guide cardiac valve surgery

Beating heart aortic and mitral valve surgery rely predominately on fluoroscopy and

transesophageal ultrasound for guidance. However, fluoroscopy requires the use of

nephrotoxic contrast agents and transesophageal ultrasound suffers from severe arti-

facts once the surgical tools have been introduced into the heart. We address these

issues by integrating a small ultrasound transducer array directly into the delivery

tool for TAVI and neochordae implantation.

2 Extracting hidden temporal information from intraoperative video

While intraoperative video shows the gross motions of tools and tissue, it also con-

tains considerable information that is not obvious to the surgeon. The cardiac and

respiratory cycles induce subtle changes in the video, which can, among other things,

provide cues as to the location of critical vasculature. We aim to develop methods

for extracting this information through temporal processing and to apply them to

intraoperative ultrasound and endoscopic video.

1.5 Thesis Outline

This thesis is presented in integrated article format with Chapters 2-6 derived from journal

articles and conference proceedings. Some of these chapters combine two closely related

publications and additional material has been added throughout the thesis to improve the

flow and address interesting points relating to the research not covered in the original pub-

lications. I was the first author of the papers from which these chapters were derived and

was responsible for developing the proposed methods, designing and conducting the ex-

periments and analyzing results. My sincere thanks goes to all of my co-authors, who
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contributed their expertise, time and resources to these projects. This thesis would not have

been possible without them.

1.5.1 Chapter 2: Ultrasound Guidance for Beating Heart Cardiac

Surgery

One of the major challenges of minimally invasive cardiac valve surgery is the difficulty of

obtaining real-time imaging inside the beating heart. Ultrasound is an attractive modality

as it does not require nephrotoxic contrast agent or ionizing radiation. However, ultrasound

images are difficult to interpret especially once the surgical tools are introduced as they

create artifacts and occlusions in the image. We address this issue by integrating ultrasound

directly into surgical devices for deploying TAVI valves and neochordae implants. This

onsite ultrasound provides a direct view of the tissue where the implants are being deployed.

In addition, augmented reality is used to provide more anatomical context. In phantom

models, this onsite imaging with augmented reality performed as well as fluoroscopy in

deploying TAVI valves. Furthermore, it showed potential in capturing the mitral leaflets for

neochordae implantation while achieving consistent bite depth and spacing of the implants.

1.5.2 Chapter 3: Detection and Visualization of Dural Pulsation

While the previous chapter dealt with improving the acquisition and display of real-time

intraoperative ultrasound, here we developed processing methods to extract subtle pulsa-

tions, a valuable cue in spine needle interventions where the pulsating dura can be used

to find a clear needle trajectory to the epidural space. These pulsations were detected us-

ing extended Kalman filtering to find regions of the image that exhibited periodicity at the

right frequency and amplitude. The processing ran in real-time on a commercial ultrasound
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system. In phantom experiments, it was shown to decrease the number of attempts and re-

sulted in more direct needle trajectories when compared against conventional ultrasound

guidance. In addition, it was integrated into an augmented reality environment, similar to

the kind developed in Chapter 2, but with virtual models of spinal anatomy and the tracked

needle.

1.5.3 Chapter 4: Analysis of Periodicity in Video Sequences through

Dynamic Linear Modeling

This chapter expands on the periodicity analysis from Chapter 3. In particular, dynamic

linear modeling was used to provide a more general statistical framework for analyzing

videos. Using this methodology, periodicity could be detected through a likelihood ratio

test along with maximum likelihood estimates of important model parameters. In addi-

tion to processing ultrasound videos, this approach succeeded in heart rate estimation and

perfusion mapping from natural video and ventilation imaging from free-breathing MRI.

1.5.4 Chapter 5: Microvasculature Segmentation from B-mode Ultra-

sound Video Sequences

Time series analysis of medical videos is not limited to periodicity detection. In this chap-

ter, we show how Bartletts test, a statistical method based on the cumulative periodogram,

can be used to identify flowing blood in high frequency, microvasculature ultrasound. This

processing was performed on chick embryo models, which are commonly used for studying

angiogenesis in cancer, where it outperformed conventional power Doppler in segmenting

the microvasculature.
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1.5.5 Chapter 6: Motion Magnification for Endoscopic Surgery

The other chapters on temporal video processing focused on the detection of pulsation and

blood flow or explicit modeling where parameters, such as heart rate, were extracted from

the videos. These tasks are much harder where complex motion patterns are visible. In this

chapter we used Eulerian video magnification to enhance subtle pulsations in endoscopic

videos. This approach produced very natural videos where the pulsation of important vas-

culature was increased, making them more salient. This chapter presented techniques for

reducing artifacts and improving the quality of the enhanced video, as well as tracking the

heart rate automatically through adaptive filtering. These techniques are applied to enhance

the basilar artery in endoscopic third ventriculostomy and pulsations in the neurovascular

area in radical prostatectomy. A local phase variant of Eulerian video magnification was

implemented to run on the da Vinci Xi system, processing full resolution stereoscopic

video in real-time. An ongoing retrospective study seeks to demonstrate the efficacy of

these methods in finding the prostatic artery in robotic prostatectomy cases.
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Kathrin Krähenbühl, Andreas Raabe, and Jürgen Beck. The silent loss of neuron-

avigation accuracy: a systematic retrospective analysis of factors influencing the

mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery,

72(5):796–807, 2013.

[29] Edward A Spiegel, Henry T Wycis, M Marks, and AJ Lee. Stereotaxic apparatus for

operations on the human brain. Science, 106(2754):349–350, 1947.

[30] Laurens F Tops, Jeroen J Bax, Katja Zeppenfeld, Monique RM Jongbloed, Hildo J

Lamb, Ernst E van der Wall, and Martin J Schalij. Fusion of multislice computed

tomography imaging with three-dimensional electroanatomic mapping to guide ra-

diofrequency catheter ablation procedures. Heart Rhythm, 2(10):1076–1081, 2005.

[31] P. Jabbour, S. Tjoumakaris, and R. Rosenwasser. Angiography, MRA in Image Guided

Neurosurgery, pages 299–305. Springer Berlin Heidelberg, 2009.

[32] I-A Rasmussen, F Lindseth, OM Rygh, EM Berntsen, T Selbekk, J Xu, TA Nagelhus

Hernes, E Harg, A Håberg, and G Unsgaard. Functional neuronavigation combined

with intra-operative 3d ultrasound: initial experiences during surgical resections close



www.manaraa.com

Bibliography 23

to eloquent brain areas and future directions in automatic brain shift compensation of

preoperative data. Acta neurochirurgica, 149(4):365–378, 2007.

[33] Joy Hirsch, Maximilian I Ruge, Karl HS Kim, Denise D Correa, Jonathan D Victor,

Norman R Relkin, Douglas R Labar, George Krol, Mark H Bilsky, Mark M Souwei-

dane, et al. An integrated functional magnetic resonance imaging procedure for preop-

erative mapping of cortical areas associated with tactile, motor, language, and visual

functions. Neurosurgery, 47(3):711–722, 2000.

[34] V Braun, S Dempf, R Weller, S-N Reske, W Schachenmayr, and HP Richter. Cranial

neuronavigation with direct integration of 11 c methionine positron emission tomog-

raphy (pet) data–results of a pilot study in 32 surgical cases. Acta Neurochirurgica,

144(8):777–782, 2002.

[35] Michael MacManus, Ursula Nestle, Kenneth E Rosenzweig, Ignasi Carrio, Cristina

Messa, Otakar Belohlavek, Massimo Danna, Tomio Inoue, Elizabeth Deniaud-

Alexandre, Stefano Schipani, et al. Use of pet and pet/ct for radiation therapy plan-

ning: Iaea expert report 2006–2007. Radiotherapy and Oncology, 91(1):85–94, 2009.

[36] Andrew D Wiles, David G Thompson, and Donald D Frantz. Accuracy assessment

and interpretation for optical tracking systems. In Proceedings of SPIE, volume 5367,

pages 421–432, 2004.

[37] G Berci and KA Forde. History of endoscopy. Surgical Endoscopy, 14(1):5–15, 2000.

[38] Hans Henrik Holm and Bjørn Skjoldbye. Interventional ultrasound. Ultrasound in

Medicine & Biology, 22(7):773–789, 1996.



www.manaraa.com

24 Chapter 1. Introduction

[39] Andrea Colli, Erica Manzan, Fabio Zucchetta Fabio, Cristiano Sarais, Demetrio

Pittarello, Giovanni Speziali, and Gino Gerosa. TEE-guided transapical beating-

heart neochord implantation in mitral regurgitation. JACC: Cardiovascular Imaging,

7(3):322–323, 2014.

[40] Gregory S Fischer, Iulian Iordachita, Csaba Csoma, Junichi Tokuda, Simon P Di-

Maio, Clare M Tempany, Nobuhiko Hata, and Gabor Fichtinger. Mri-compatible

pneumatic robot for transperineal prostate needle placement. IEEE/ASME Transac-

tions on Mechatronics, 13(3):295–305, 2008.

[41] Adrienne E Campbell-Washburn, Mohammad A Tavallaei, Mihaela Pop, Elena K

Grant, Henry Chubb, Kawal Rhode, and Graham A Wright. Real-time MRI guidance

of cardiac interventions. Journal of Magnetic Resonance Imaging, 2017.

[42] Ferenc A Jolesz. MRI-guided focused ultrasound surgery. Annual Review of

Medicine, 60, 2009.

[43] Mario Ries, Baudouin Denis De Senneville, Sébastien Roujol, Yasmina Berber, Bruno

Quesson, and Chrit Moonen. Real-time 3D target tracking in MRI guided focused ul-

trasound ablations in moving tissues. Magnetic Resonance in Medicine, 64(6):1704–

1712, 2010.

[44] Jörg Kempfert, Volkmar Falk, Gerhard Schuler, Axel Linke, Denis Merk, Friedrich W

Mohr, and Thomas Walther. DynaCT during minimally invasive off-pump transapical

aortic valve implantation. Ann Thorac Surg, 88(6):2041, 2009.



www.manaraa.com

Bibliography 25

[45] Koichi Maeda, Toru Kuratani, Kei Torikai, Kazuo Shimamura, and Yoshiki Sawa.

Transcatheter aortic valve replacement using dynact. Journal of cardiac surgery,

27(5):551–553, 2012.

[46] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual displays.

IEICE Transactions on Information and Systems, 77(12):1321–1329, 1994.

[47] John T Moore, Michael WA Chu, Bob Kiaii, Daniel Bainbridge, Gerard Guiraudon,

Chris Wedlake, Maria Currie, Martin Rajchl, Rajni V Patel, and Terry M Peters. A

navigation platform for guidance of beating heart transapical mitral valve repair. IEEE

Transactions on Biomedical Engineering, 60(4):1034–1040, 2013.

[48] Golafsoun Ameri, John SH Baxter, A Jonathan McLeod, Terry M Peters, and Elvis CS

Chen. Augmented reality ultrasound guidance for central line procedures: Prelimi-

nary results. In Workshop on Augmented Environments for Computer-Assisted Inter-

ventions, pages 11–20. Springer, 2015.

[49] Cristian A Linte, Katherine P Davenport, Kevin Cleary, Craig Peters, Kirby G Vos-

burgh, Nassir Navab, Pierre Jannin, Terry M Peters, David R Holmes, Richard A

Robb, et al. On mixed reality environments for minimally invasive therapy guidance:

Systems architecture, successes and challenges in their implementation from labora-

tory to clinic. Computerized Medical Imaging and Graphics, 37(2):83–97, 2013.

[50] Terry M Peters and Cristian A Linte. Image-guided interventions and computer-

integrated therapy: Quo vadis? Medical Image Analysis, 33:56–63, 2016.



www.manaraa.com

26 Chapter 1. Introduction

[51] Jannick P Rolland and Henry Fuchs. Optical versus video see-through head-mounted

displays in medical visualization. Presence: Teleoperators and Virtual Environments,

9(3):287–309, 2000.

[52] George D Stetten and Vikram S Chib. Overlaying ultrasonographic images on direct

vision. Journal of Ultrasound in Medicine, 20(3):235–240, 2001.

[53] Kate A Gavaghan, Matthias Peterhans, Thiago Oliveira-Santos, and Stefan Weber. A

portable image overlay projection device for computer-aided open liver surgery. IEEE

Transactions on Biomedical Engineering, 58(6):1855–1864, 2011.



www.manaraa.com

Chapter 2

Ultrasound Guidance for Beating Heart

Cardiac Surgery

This chapter includes material adapted from:

A. Jonathan McLeod, Maria E. Currie, John T. Moore, Daniel Bainbridge, Bob B. Kiaii,

Michael WA Chu, and Terry M. Peters. Phantom study of an ultrasound guidance system

for transcatheter aortic valve implantation. Computerized Medical Imaging and Graphics

50: 24-30, 2016.

A. Jonathan McLeod, John T. Moore, and Terry M. Peters, Beating heart mitral valve repair

with integrated ultrasound imaging. In Proc. SPIE 9415: 941504-1-8, 2015.

2.1 Introduction

Off-pump, beating heart therapies are quickly becoming standard of care for patients previ-

ously deemed inoperable [1]. Since the first human transcatheter aortic valve implantation

27
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(TAVI) was performed in 2002 [2] over 200,000 TAVI procedures have been performed

worldwide to treat severe aortic stenosis [3]. In this procedure a catheter, equipped to de-

ploy an expanding prosthetic valve, is navigated to the aortic annulus where the prosthesis

is deployed inside the native aortic valve (AV). Originally, TAVI’s use was restricted to

high-risk patients ineligible for conventional surgery where the risks of this relatively new

procedure were justified as there was no established safe and effective treatment available

[4]. However, as more evidence of TAVI’s effectiveness and safety emerges, its use is ex-

panding to intermediate risk patients for whom it can offer a less invasive alternative with

shorter hospital stays than conventional surgery [5]. Given the recent success of minimally

invasive aortic valve therapy, attention is turning to the mitral valve (MV) with a plethora of

valve repair and replacement devices now in clinic or under development. One of the most

prevalent is the MitraClip device, which performs edge-to-edge repair through a catheter

deployed clip to treat mitral regurgitation and has been used in over 35,000 patients [6].

Several other valve repair devices have recently made the transition to human trials, includ-

ing the NeoChord MV repair device, which received CE mark of approval in 2012 and has

been used in over 500 patients [7]. In addition, transcatheter mitral valve replacement has

the potential to treat a wider range of mitral valve disease anatomy than possible through

minimally invasive repair. Several commercial systems for transcatheter mitral valve re-

placement have been developed and used in humans with preliminary results on 5 to 30

patients being reported [8].

Both minimally invasive AV and MV procedures rely extensively on intraoperative

imaging through fluoroscopy and transesophogeal echocardiography (TEE).

1. Navigation: the surgical tools must be navigated from their entry point into the

body to the region of interest. Most transcatheter valve repairs and replacements
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are performed using either a transapical or transfemoral approach. Intraoperative

imaging is limited by the poor tool visualization in ultrasound and the low soft-tissue

contrast in fluoroscopy.

2. Positioning: Once the surgical tools arrive at the target they must be positioned in

the precise location needed for effective treatment. The highly dynamic environment

inside the moving heart necessitates intraoperative imaging to provide real-time feed-

back.

3. Therapy: Finally, the therapeutic aspect of the surgery must be accomplished. The

minimally invasive tools used in beating heart surgery are designed to accomplish

this step as mechanically as possible. For instance, with the NeoChord device a

harpoon shaped needle is used to pull the suture through the valve leaflet while in

TAVI procedures the prosthetic valves are either deployed by inflating a balloon or

are self-expanding. Intraoperative imaging is used to monitor final deployment of the

device and confirm valve function.

Much of the effort in improving image guidance for intra-cardiac surgery has focused

on the navigation phase of the procedures. Linte et al. [9] developed an augmented reality

(AR) guidance system that displayed magnetically tracked surgical tools and intraopera-

tive ultrasound relative to 3D models of the heart derived from preoperative images. These

models could include dynamic surface models played as a cine loop and synchronized with

intraoperative EKG readings. Registration between the preoperative models and the in-

traoperative environment can be accomplished through aligning both the mitral and aortic

valve annuli [10]. Building on this work, a mitral valve repair guidance system proposed

by Moore et al. [11] displayed only the valve annuli without any preoperative data. This
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greatly simplified clinical work flow and, in animal studies, was found to significantly

reduce the time, path length and potential for injury when navigating to the mitral valve.

However, this guidance system was limited to the navigation task and, once the mitral valve

was reached, it was not used any further. This chapter discusses two procedures where we

develop image guidance to aid in positioning and present preliminary results. In Section

2.2, we develop an AR guidance system for TAVI. Since the catheter is advanced along

a guide wire, deploying the TAVI prosthesis is largely a 1D positioning problem where

the surgeon must choose the appropriate depth to avoid blocking the coronary ostia or im-

peding mitral valve function. Furthermore, rapid ventricular pacing keeps the aortic valve

relatively static while the valve prosthesis is positioned and deployed. We propose an AR

guidance system that lets the surgeon choose the deployment depth based on intraoperative

ultrasound and then guides the catheter to the ideal position. In addition, we develop a spe-

cialized delivery tool that integrates intracardiac echocardiography (ICE) imaging directly

into the tool itself, to visualize the stent and pertinent anatomy and to monitor deployment.

In Section 2.3, we similarly develop a modified NeoChord DS-1000 device that includes

integrated ICE. Grasping the mitral valve leaflets is a more complex task than expanding

the TAVI stent. The addition of integrated ICE imaging enables the AR guidance to extend

into the positioning phase of the procedure by providing high-quality onsite ultrasound that

is incorporated into the AR environment.

2.2 Transcatheter Aortic Valve Implantation

TAVI procedures rely primarly on single-plane fluoroscopy for guidance with which only

gross structures are visible [12]. In addition, the contrast agents injected into the aortic

root during fluoroscopic guidance are nephrotoxic and can increase a patients risk of acute
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kidney injury[13, 14, 15, 16]. This is a major concern as many TAVI patients have un-

derlying renal dysfunction and are more vulnerable to acute kidney injury. Furthermore,

fluoroscopic imaging exposes both the patient and physicians to ionizing radiation. While

the radiation dose for a single procedure is low, the cumulative radiation exposure of health

care professionals at centers with a high throughput of TAVI is a concern [17]. There have

been several proposed alternatives to single plane fluoroscopy that aim to improve stent

placement and reduce or eliminate the use of nephrotoxic contrast and ionizing radiation,

including rotational angiography, magnetic resonance imaging (MRI), and transesophageal

echocardiograph (TEE) guidance. In rotational angiography, an intraoperative cone beam

computer tomography (CT) volume is acquired by rotating a C-arm around the patient.

This volume can be used to generate models of the aortic root which are overlaid on the

fluoroscopy images to provide more anatomical context and can also be used to select the

ideal fluoroscopy imaging plane [18]. This technique requires contrast and ionizing radia-

tion to acquire the intraoperative CT volume and for fluoroscopy throughout the procedure.

Alternatively, intraoperative magnetic resonance imaging has been used to guide placement

of the valve stent, resulting in successful implantation in animal studies [19]. Although this

technique eliminates contrast and radiation exposure, intraoperative MRI is expensive and

not widely available [20].

Intraoperative ultrasound provides a more attractive modality for image guidance since

it does not require nephrotoxic contrast agents or ionizing radiation in addition to being

inexpensive and easily integrated into surgical workflow. TEE is frequently used during

TAVI procedures for assessing valve function after the stent is deployed. Intraoperative

guidance using only TEE [21] and TEE with fluoroscopy (without contrast agents)[22]

has been previously reported. However, TEE does not provide satisfactory imaging of the



www.manaraa.com

32 Chapter 2. Ultrasound Guidance for Beating Heart Cardiac Surgery

catheter or surrounding tissue due to the highly reflective surface of the catheter and result-

ing shadowing artifacts. For this reason, TEE has been proposed as a bridging modality

allowing preoperative models to be registered into the intraoperative environment. Lang

et al. [23], proposed using TEE to register preoperative CT models to fluoroscopy to im-

prove image guidance without requiring rotational angiography. Luo et al. [17] proposed

a system using magnetic tracking of the TEE and catheter to eliminate the need for flu-

oroscopy entirely. In this system, a preoperative model of the aortic root was registered

to the tracked ultrasound. The tracked catheter could then be visualized in relation to the

aortic model so that the stent could be deployed at the desired depth. One challenge of

these techniques is that the registration between ultrasound and preoperative CT is diffi-

cult, resulting in a target registration error of 5.9±3.2 mm and 3.3±1.6 mm respectively. In

addition, both these works used a manual segmentation of the aorta from preoperative CT

which is time consuming and difficult to integrate into clinical workflow. Previous work

with mitral valve repair has found that simply defining the valve annuli from tracked TEE is

sufficient for image guidance and eliminates the need for complex preoperative models and

registrations with associated errors [11]. Here, a simplified guidance system using TEE and

magnetic tracking is developed and validated against fluoroscopic guidance in a phantom

environment.

2.2.1 Methods

Augmented Reality

The proposed guidance system consists of a augmented reality environment displaying real-

time ultrasound along with the location of the tracked valve stent and the intraoperatively

defined anatomy. In order to display the TEE images and catheter in a common frame of
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Figure 2.1: Magnetically tracked catheter with crimped valve and calibration block. The
sensor was affixed to the catheter tip just below the balloon as shown. The white outer
sheath can be moved up to completely cover the sensor. A ledge inside the calibration block
allows the crimped valve to be held in a specific configuration so that the transformation
between the catheter sensor and the prosthetic valve can be defined.

reference, both of these tools were magnetically tracked using the Aurora tabletop tracking

system (NDI, Waterloo, Ontario). A 6 degree of freedom (DOF) magnetic tracking sensor

was affixed to the Ascendra TAVI catheter (Edwards Life Sciences, Irvine, California) just

below the balloon with the cable running inside the outer sheath of the catheter. The iE33

ultrasound system with an X7-2t TEE probe (Philips Healthcare, Andover, Massachusetts)

was used and is capable of providing 2D, biplane and live 3D imaging. A second 6 DOF

sensor was integrated into a custom-made cap that attaches to the TEE probe and calibrated

using a Z-bar phantom. Once the valve was crimped onto the catheter, it was inserted it

into a tracked calibration block designed to hold the catheter shaft and valve in a precise

configuration with the leading edge of the valve resting against a ledge inside the calibra-

tion block (Figure 2.1). This calibration procedure finds the spatial transform between the

magnetic sensor and the crimped valve and catheter shaft.

The aortic valve can ve defined intraoperatively in the augmented reality environment

by selecting points on the aortic valve in the tracked biplane ultrasound. These points, along
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Figure 2.2: The aortic valve is defined on the tracked biplane ultrasound (a). The tracked
catheter with the calibrated stent, the user defined aortic valve and the targeting plane are
displayed in the augmented reality guidance system (b). A split screen view presents two
camera angles appropriate for centering and advancing it to the correct depth. The targeting
plane changes from red to green when the stent reaches the desired deployment depth (c).

with a tubular spline outlining the valve, are displayed in the augmented reality guidance

system and a targeting plane is then created at the ideal deployment depth. The remaining

distance from the catheter to this plane is displayed numerically and the targeting plane

changes color to indicate when the ideal deployment depth is reached (Figure 2.2). When

visible in the echo image, other pertinent anatomy including the coronary ostia can also be

displayed in the guidance system.

Delivery Tool with Integrated ICE

One limitation of relying on mixed reality guidance is the lack of adequate imaging during

deployment. In conventional procedures, live fluoroscopy video provides feedback to mon-
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Figure 2.3: A diagram of the delivery tool with ICE (a), a photograph of the calibration
procedure (b) and a screenshot of the augmented reality models (c) are shown.

itor deployment and fine tune the position of the stent as the balloon is inflated. The image

quality of TEE is very poor once the catheter and stent have entered the aortic valve, limit-

ing its usefulness at this stage of the procedure. To overcome these issues a custom-made

stent delivery tool with integrated ultrasound imaging was created for transapical proce-

dures. The delivery tool contains a channel through which an intracardiac echocardiogra-

phy probe can be inserted. The ICE probe acquires images through an acoustic window in

the shaft of the tool. The prosthetic valve is positioned so that it partially covers the ICE

transducer. This ensures that the leading edge of the stent will be visible in the ultrasound

image. Calibration is performed using a similar method to the one used for the tracked

catheter. The delivery tool is placed inside a calibration block with the leading edge of the

valve resting against a ledge in the block. However, this calibration block is half open to

accommodate the delivery tool and a tracked needle is used to locate the tip of the deliv-

ery tool so that both the tool and the valve may be tracked and visualized in the guidance

system (Figure 2.3).

The tool itself was manufactured through rapid prototyping, using VeroWhite material

on an Objet30Pro printer (Stratasys, Eden Prairie, Minnesota), and contained a channel
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for an AcuNav10F ICE catheter (Siemens, Erlangen, Germany). The outer diameter of the

shaft was 14mm to accommodate the fragility of the rapid prototyping material. In compar-

ison, the TAVI introducer used in conventional transapical procedures is 10mm in diameter

and other transapical tools are of similar sizes. For instance, the Neochord (Neochord,

Eden Prairie, Minnesota) is a rigid tool being used successfully for mitral valve repair and

is approximately 9mm diameter. The diameter of the delivery tool could easily be reduced

to under 10mm if machined from stronger material. While the size and rigidity of the tool

are unlikely to pose a problem for transapical procedures, it would be very difficult to create

a similar system for transfemoral procedures as a small and flexible catheter is required for

this approach.

Phantom

The phantom used in this experiment is a modified version of a custom-made system de-

signed to simulate functional mitral and aortic valves. The phantom consists of a left

ventricle, atrial reservoir, valve sheet containing mitral and aortic valves, and an actua-

tor system. The ventricle has an apical access port to simulate interventions such as TAVI.

In this instance, the phantom was made of a soft silicone (Shore A 30 durometer) while

water was used to simulate blood. The inner diameter across the aortic valve was 23mm at

the commissures. To facilitate fluoroscopic imaging for this study, the aortic valve annulus

was placed approximately 30mm beyond the mitral valve plane, relative to the apical entry

point. Experiments were performed in a static model to simulate rapid pacing, but a raised

tower was attached beyond the aortic root to increase pressure on the basal side of the valve,

allowing realistic simulation of contrast enhancement for fluoroscopy (Figure 2.4).
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Figure 2.4: The phantom used in this study consists of a silicone left ventricle and aorta.
The aorta is contained in a water bath and the outflow tract connects to the reservoir. Note
that the distance between the mitral and aortic valves has been exaggerated to facilitate
improved imaging away from the edge of the water bath where the ventricle is joined with
the silicone valves.
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Figure 2.5: The real stent (left) and surrogate stent (right) are shown attached to the delivery
catheter.

Surrogate Stent

As the balloon-inflated TAVI valves are single use, a surrogate stent was used for the ex-

periments to allow a larger number of trials to be performed (Figure 2.5). The surrogate

stent was made from an elastic material with radiopaque markers simulating the struts of

the stent and had an appearance in both fluoroscopy and ultrasound similar to the real valve

stent. The surrogate stent could be reused without significant wear and would collapse as

the balloon was deflated. For this reason, all measurements were acquired while the balloon

was inflated.

Valve Deployment Experiments

The proposed guidance system, both with and without the ICE delivery tool, was compared

against fluoroscopic guidance in the phantom model. A cardiac surgery resident deployed

the surrogate valve in the phantom 10 times using each of the three guidance methods.

After each deployment, a camera jig was positioned over the phantom to photograph the

stent inside the aorta from a fixed position. A reference checkerboard was mounted beside

the aorta at the same depth as the two commissures visible from the camera’s position.

Immediately after deployment, a photograph was acquired for retrospective analysis in

which the stent struts and the two visible commissures were manually identified. The

distance between the commissure plane and the furthest visible stent strut was measured
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Figure 2.6: Measurements were taken from photographs acquired from the camera jig (left)
which holds the camera directly above the aortic valve and perpendicular to the surface of
the water bath. The commissures, valve and reference checkerboard were all visible in these
photographs (right). The depth of deployment, d, is measured between the commissural
plane and furthest visible stent strut as illustrated.

using the checkerboard reference for scale (Figure 2.6).

Fluoroscopy

The first experiment simulated conventional contrast enhanced fluoroscopic guidance. First,

a guidewire was inserted through the apex of the phantom and passed through the ventri-

cle and aortic valve, terminating in the aortic reservoir. A pigtail catheter was deployed

through the aortic reservoir and rested above one of the aortic leaflets. In a real procedure,

the pigtail catheter is used to deliver contrast and serves as a radiopaque marker identifying

the aortic valve. The valve delivery catheter was inserted onto the guidewire and into the

left ventricle of the phantom. Prior to each trial, contrast was injected into the aortic root
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so that the valve, including commissures and nadir, were visible in the fluoroscopic image.

The stent was positioned using fluoroscopic video so that it appeared that half of the stent

lay on either side of the valve (Figure 2.7). Before deployment, the pigtail catheter was

withdrawn to ensure that it would not become caged by the stent. As the current standard of

care is to deploy the valve using the fluoroscopy images qualitatively without any quantita-

tive target, it is difficult to give an exact deployment error or location for ideal deployment.

In this experiment, the user was instructed to strive to achieve consistent deployment in all

10 trials. The variability of valve deployment depths give an estimate of the minimum error

achieved in fluoroscopic guidance.

Augmented Reality

In the second experiment, valve deployment took place using the proposed guidance sys-

tem. As in the fluoroscopy study, a guidewire was passed through the aortic valve. The

surrogate stent was placed on the modified valve delivery catheter and the position of the

stent was determined using the calibration block. After the delivery catheter was inserted

into the left ventricle, all three aortic commissures were identified in the ultrasound image.

A targeting plane was created 5mm beyond the commissural plane, and the valve was de-

ployed at this location. The aortic valve and stent calibration were repeated for each trial

so that variability in these steps was included in the stent deployment. In addition to the

photographic measurements, the deployment depth reported by the guidance system was

also recorded.

The choice of features and deployment depth were arbitrary and the valve nadir or any

identifiable points on the aortic valve could be used instead of the commissures so long as

the deployment depth is adjusted accordingly. In our case the commissures were chosen
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Figure 2.7: Fluoroscopic images during all phases of deployment are shown. First, contrast
is injected into the aortic reservoir so the aortic valve can be seen (a). The pigtail catheter
resting above one of the valve leaflets serves as a valuable landmark throughout the proce-
dure. Next, the catheter is advanced to the desired position (b) and the balloon inflated (c).
The surrogate valve (b) has a similar appearance to the real valve (d) under fluoroscopic
guidance.
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as they were easily identified and were the features closest to where the leading edge of

the stent should be deployed. The deployment depth of 5mm was chosen to ensure the

leading edge of the valve was deployed beyond the commissures and clear photographic

measurements could be acquired. In practice, the deployment depth would depend on the

patient’s anatomy and the profile of the prosthetic valve to ensure the coronary ostia are not

obstructed by the stent.

Augmented Reality with ICE

In the final experiment, the specialized delivery tool was used instead of the traditional

catheter. As when using the tracked catheter in the previous experiment, the position of the

stent on the device was determined using a specialized calibration block. The same image

guidance system was used to guide the delivery tool into the aortic valve and in initial

positioning of the stent. As the tool was advanced, both the stent and aortic valve leaflets

were visible on the live ICE video (Figure 2.8). The stent was deployed such that the tip of

the leaflet was approximately 5mm behind the leading edge of the stent as seen in the ICE

images.
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Figure 2.8: ICE imaging acquired with the delivery tool. The stent along with the aorta
including leaflets are visible. Here the hinge point of the aortic valve is clearly visible in
the center of the image. The real stent (left) and surrogate stent (right) result in similar
image quality.

2.2.2 Results

The results for all three guidance systems are shown in Table 2.1. The fluoroscopy guid-

ance system achieved a deployment depth of 6.3±3.4mm (mean±standard deviation). The

guidance system resulted in a deployment depth of 7.0±2.9 mm as recorded by photo-

graphic measurements while the deployment depth report by the guidance system itself

was 5.03±0.03mm. Finally, when the ICE delivery tool was used a deployment depth of

5.7mm±2.3mm was achieved. The deployment depth for all trials is reported in Table 1

and box plots summarizing the distribution are shown in Figure 2.9.

Table 2.1: Deployment depths using the three guidance systems (target depth = 5mm).

Trial 1 2 3 4 5 6 7 8 9 10

Fluoro(mm) 6.95 1.29 0.62 5.99 9.28 11.07 7.31 9.40 5.96 4.94
AR(mm) 9.83 7.84 2.97 7.70 6.76 6.59 7.92 9.95 9.23 0.84

AR+ICE(mm) 2.46 0.98 5.76 7.94 7.47 4.91 7.86 7.77 6.04 5.34
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Figure 2.9: Box plots showing the distribution of deployment depths for the different guid-
ance systems. Each box includes the interquartile range in deployment depth with the
median indicated by the central horizontal line. Individual deployments are plotted with
the ◦ symbol.
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2.2.3 Discussion

Experimental Results

The root mean squared error (RMSE) of the deployment depth was 3.4mm when using the

tracked catheter and 2.3mm when using the customized delivery tool with integrated ICE

imaging. In comparison Luo et al. [17] achieved an RMSE of 3.3mm in transfemoral pro-

cedures on a porcine model using a magnetically tracked catheter. Our study also included

a comparison with contrast enhanced fluoroscopic guidance. In clinical practice, the stent

would need to be deployed at a depth sufficiently low to prevent obstruction of the coro-

nary ostia but still far enough into the aorta to prevent migration or obstruction of the mitral

valve. The fluoroscopic images are used to ensure these conditions are met before valve de-

ployment. The qualitative nature of this type of image guidance makes it difficult to assign a

desired target depth, and even if one were chosen, it would be difficult to accurately achieve

this deployment depth without more elaborate intraoperative analysis of the fluoroscopic

images. Instead, we only evaluate the precision of deployment in fluoroscopic guidance

where we achieved a standard deviation in deployment depth of 3.4mm. In comparison

standard deviation in AR and AR+ICE experiments were 3.0mm and 2.4mm respectively.

However, the lower variance in deployment depth observed in both the augmented reality

methods were not statistically significant when compared against fluoroscopy under an F-

test for equal variance (p > 0.05). It is also worth noting that the RMSE in the augmented

reality guidance systems, which incorporates both the bias (mean) and precision (standard

deviation) added in quadrature, was as good or smaller (3.4mm for the tracked catheter and

2.3mm for the ICE delivery tool). This suggests that a similar level of accuracy can be

achieved with these guidance systems even when discounting the possibility of a consistent

bias in identifying the site for valve deployment in fluoroscopy.
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In this study the ICE delivery tool appeared especially promising in producing low

deployment errors. It is likely that the majority of the error in the image guidance system

comes from defining the aortic annulus and the magnetic tracking itself. This is supported

by the near perfect deployment depth reported by the magnetic tracking of 5.03±0.03.

Integrating the ICE probe into the delivery tool allows the user to correct for these errors

based on live ultrasound where both the stent and aortic valve are visible. It is interesting

to note that all but the first two trials with the ICE delivery were within a 3mm range from

4.9 to 7.9mm. This experiment was the first exposure the cardiac surgery resident had to

the new delivery tool and the ICE images were difficult to interpret leading to a substantial

learning effect, which could explain why the first two trials were so far outside this range

as seen in Figure 2.9.

Surgical Workflow

The proposed guidance system is easily integrated into the operating room. The NDI Au-

rora tabletop generator fits on top of the operating table, requiring less space than alternative

systems, and was specifically designed to work in the presence of ferrous and conducting

objects so that conventional surgical tools may be used. The tracking sensors attached to the

TEE probe and stent delivery devices do not impede workflow in the operating room. The

delivery tool with integrated ICE requires an additional ultrasound machine to be brought

into the operating room; nevertheless, this system has a smaller footprint and lower costs

than other alternatives relying on intraoperative MRI or rotational angiography.

Besides the additional ultrasound and magnetic tracking equipment required, the aortic

valve and other pertinent anatomy must be defined intraoperatively so they may be dis-

played in the guidance system. In balloon deployed TAVI procedures, an ideal opportunity
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to define the valve is presented during rapid pacing. Rapid pacing is performed twice dur-

ing these procedures: first, to test the leads prior to advancing the catheter into the aortic

valve and then again to arrest cardiac motion as the stent is deployed. The aortic valve

may be defined during the first rapid pacing without disrupting surgical workflow. This

also ensures that, when the valve is defined from tracked biplane ultrasound, the heart is

relatively stationary and in the same condition as during final deployment. The real time

tracked ultrasound is displayed in the mixed reality environment. If the aortic valve or any

other pertinent features have moved, they can be redefined before proceeding.

2.3 Mitral Valve Repair

In the NeoChord procedure, AR has been shown to improve safety, reduce navigation task

time, and greatly reduce the learning curve for the process of navigating the surgical device

to its target region of the MV coaptation region[11]. However, the substantial motion of

the MV leaflets (on the order of 15mm within the cardiac cycle) makes it essential to rely

heavily on real time image data for completing the process of grasping a leaflet (the posi-

tioning task). Our previous results with TAVI suggest that having ultrasound imaging built

into the intracardiac therapy device can substantially improve overall safety and accuracy

of the procedure. This section summarizes our first attempts at implementing on-site ultra-

sound support for mitral valve grasping and therapy delivery. The on-site ultrasound can

be used to ensure the jaws of the NeoChord device will fully engage the mitral valve leaflet

and also to achieve even spacing of the implanted neochordae along the leaflet (typically

2-7 neochordae are implanted per procedure). These tasks are important for the success of

the procedure but are very difficult using TEE imaging alone.
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2.3.1 Methods

Device Modification

Using rapid prototyping technologies (Objet30 Pro polyjet printer, Stratasys Inc.), the Neo-

Chord DS-1000 MV repair device (NeoChord Inc.) was modified to incorporate a 10-

French intra-cardiac echocardiography (ICE) transducer (Siemens Sequoia ICE console).

The ICE transducer was positioned behind the jaws of the NeoChord device with the imag-

ing plane running through the middle of the jaws. The bottom jaw of the NeoChord had a

narrow window cut through its center which allowed for imaging even when the jaws were

closed (Figure 2.10). This setup allowed for nearly uninterrupted imaging of tissue in

front of the NeoChord device as well any tissue between the jaws when they were opened.

The modified tool included two tracking sensors allowing it to be magnetically tracked and

incorporated into an augmented reality guidance system.[11]

Ultrasound Imaging

Conventional TEE guidance for this procedure relies on both 2D and 3D imaging. The

current practice in human cases is to use 2D imaging during the positioning phase of the

procedure when the NeoChord device is inserted into the mitral annulus. Once the tool

crosses the mitral valve plane, the TEE is switched to 3D mode for leaflet capture and

neocordae deployment [24, 25]. The 3D TEE imaging can visualize the Neochord device

protruding through the mitral leaflets (Figure 2.11a). However, determining bit depth from

the 3D images is difficult and the surgeon needs to rely on the four fiber optic sensors to

confirm the leaflet has been captured.

With the modified tool, the ICE probe provides high resolution ultrasound imaging

from a fixed position relative to the jaws of the NeoChord device. The mitral valve leaflet
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Figure 2.10: The original NeoChord tool (a) was modified to integrate an ICE imaging
catheter (b,c,d). The yellow arrow in (b) shows the position of the ICE transducer inside
the NeoChord tool and the red arrows in (c) show the position of the window cut into the
bottom jaw to allow for ICE imaging even when the jaws are closed. The position of the
ultrasound fan is shown in relation to the open jaws of the Neochord in (d).

can be imaged as it enters the jaws of the NeoChord so that the surgeon can make sure

full engagement of the leaflet will be achieved before closing the jaws (Figure 2.11b).

Previously deployed neochordae can also be identified from the ICE images allowing the

NeoChord device to be returned to the location of a previous deployment, which appears

as a hyperechogenicity on the valve leaflet due to the strong reflections from the implant.
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Figure 2.11: 3D TEE imaging shows the NeoChord device (red arrow) inserted through the
mitral valve during leaflet capture (a). The integrated ICE imaging shows the mitral leaflet
(yellow arrow) in relation to the bottom jaw of the neochord (blue arrow) to ensure a full
bite is achieved (b).

Augmented Reality

The modified NeoChord device was integrated into the AR environment previously de-

scribed by Moore et al. [11]. The virtual representation of the modified NeoChord in-

cluded the ICE fan so the live images could be viewed in relation to the NeoChord device

and previously identified anatomy (Figure 2.12). Within the AR environment, the user

could identify points on the mitral annulus from the ultrasound images. A spline connect-

ing these points would be displayed to represent the mitral annulus in the AR environment.

In addition, previously deployed neochordae could be identified on the ICE images and a

spherical marker was placed in the AR environment to denote their location. Although the

AR environment was originally intended for navigation only the context it provides was

helpful in interpreting the ICE images during positioning and leaflet capture.
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Figure 2.12: The AR environment includes a virtual model of the NeoChord device and ICE
fan as well as pertinent anatomy identified from the ultrasound images. The mitral annulus
is represented by the green ring connecting four yellow spheres which were defined by
the user from ultrasound. The mitral leaflet is visible on the ICE image and can be seen
extending from the mitral annulus to the jaws of the NeoChord (red arrow).

Phantom Environment

Neochordae implantation was tested in a dynamic cardiac phantom [26]. The phantom con-

sisted of a silicone left ventricle, mitral valve flange and atrial reservoir (Figure 3.6a). The

left ventricle was actuated using six pneumatic cylinders at 60bpm to simulate the contrac-

tion of the left ventricle. A custom built valve flange was used in which the mitral leaflets
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were made from a fabric embedded in the silicone (Figure 3.6b). The leaflets had a realis-

tic appearance under ultrasound and were strong enough to undergo multiple neochordae

deployments without ripping.

Figure 2.13: The phantom consisted of a left ventricle, mitral valve flange and an atrial
reservoir (a). The NeoChord is inserted through an access port (red arrow) at the apex of
the ventricle (yellow arrow). A flange containing the mitral valve (blue arrow) separated
the left ventricle from the atrial reservoir. This flange (b) was constructed out of silicone
with embedded fabric leaflets.

Neochordae Implantation

Simulated valve repair procedures were performed in the phantom to compare the modified

tool with integrated ICE to an unmodified NeoChord DS-1000. In human procedures, 2-7

neochordae are implanted as needed until valve function is improved, each implantation

being accomplished in three phases. The navigation phase involves moving the NeoChord

tool from the apex of the ventricle to the mitral annulus. This phase is typically performed

under 2D TEE guidance. For the positioning phase, the TEE is switched to 3D, the valve
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leaflet is grasped by the NeoChord device and the implant is deployed. In the third phase,

the surgeon adjusts the tension of the implanted neochord while monitoring valve function

with 2D and 3D TEE imaging. Once satisfied, the free end of the neochord implant is

secured to the apex of the left ventricle. Our experiment is only concerned with the posi-

tioning phase where the leaflet is grasped, as this is the stage at which we expect the ICE

imaging to be most useful. For the experiment the user attempted to deploy a series of neo-

chordae evenly spaced along the posterior mitral leaflet while achieving full engagement.

Neochordae should only be deployed when the leaflet is fully captured by the jaws of the

NeoChord device resulting in a bite depth of approximately 4mm [27]. A smaller bite depth

could result in dehiscence when the tension in the neochord implant is adjusted. Addition-

ally, we wished to see if the ICE images could be used to better target the deployment of

multiple neochordae as the location of previous deployments are easily identified from the

ICE images. Once the first implant was deployed, the user continued to deploy neochordae

along the posterior leaflet (aiming to achieve a total of 3-5 deployments as evenly spaced

as possible). After the deployments were complete, the mitral valve flange was removed

from the phantom and the bite depths and spacing between the neochordae implants were

measured with calipers (Section 2.3.2).

Integrated ICE Guidance

The mitral valve annulus was defined in the AR environment using four manually identified

points. The modified delivery tool was navigated through the mitral valve. Using the 3D

TEE image, the Neochord delivery tool was positioned at the desired location along the

posterior leaflet and ICE imaging was used to assist in leaflet capture. The NeoChord

device was maneuvered so the mitral leaflet rested on the bottom jaw of the device with
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the tip of the leaflet as close to the back of the device as possible and the neochord implant

was deployed. To help achieve an even spacing between implants, previously deployed

neochordae were identified in the ICE images. Spherical markers were created in the AR

environment to mark their location so the NeoChord device could be positioned relative to

previous deployments.

TEE Only Guidance

When using the unmodified NeoChord, 3D TEE images were used for final positioning and

leaflet capture. In addition to the TEE images, the unmodified tool had four optical sensors

on the bottom jaw of the NeoChord that were connected fiber-optically to four display

lights on a handheld monitoring unit. When the leaflet came into contact with the bottom

jaw of the NeoChord, the lights on the handheld monitoring unit would brighten. The upper

jaw of the NeoChord was then lowered to grasp the leaflet and the monitoring device was

checked again to ensure that all for optical sensors were in contact with the leaflet.

2.3.2 Results

Four neochordae were implanted using the ICE guidance and three were implanted using

TEE only. The third neochordae implanted using ICE guidance was poorly placed on

the side of the leaflet and so a fourth neochordae was implanted. In addition, there was

one failed attempt at deploying a chordae with ICE guidance and two failed attempts at

deployment when using TEE only guidance. These failed attempts could have been caused

by missing the leaflet entirely or having it slip from the jaws of the NeoChord device

during leaflet capture. The final position of all of the implanted neochordae is shown in

Figure 2.14.



www.manaraa.com

2.3. Mitral Valve Repair 55

Figure 2.14: The neochordae implanted using ICE (a) and TEE only (b) guidance. Each
implant is numbered in the chronological order of deployment.

Bite Depth

The bite depth was measured as the distance from each implant to the nearest point on the

leaflet edge. When using ICE guidance the bite depth ranged from 4.4mm to 6.3mm for

four implants, indicating full engagement of the leaflet was consistently achieved. When

using the TEE only guidance the bite depth ranged from 1.3mm to 4.4mm. Two of the three

implants barely engaged the leaflet with a bite depth of less than 2mm. The measured bite

depth for all implants is shown in Table 2.2

Table 2.2: Bite depth achieved using integrated ICE and TEE only guidance

Integrated ICE TEE Only
Implant # 1 2 3 4 1 2 3

Depth (mm) 4.4 5.0 5.0 6.3 1.4 1.7 4.4

Implant Spacing

The distance between adjacent neochordae was also measured and reported in Table 2.3.

While there are too few measurements to get an accurate estimate of the spacing, the third
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implant under ICE guidance was accidentally deployed on the side of the leaflet. This mis-

positioning of the NeoChord device could have been prevented by better monitoring of the

3D TEE which was displayed to the user throughout the procedure. After this deployment

the user was able to position the tool between the 2nd and 3rd implants, which were eas-

ily identified on the ICE images, and use the AR and 3D TEE to deploy a 4th neochord

between them.

Table 2.3: Implant spacing achieved using integrated ICE and TEE only guidance

Integrated ICE TEE Only
Implant # 1-2 2-4 3-4 1-2 1-3

Spacing (mm) 4.3 8.7 5.2 8.7 10.0

2.3.3 Discussion

The integrated ICE imaging allowed the mitral valve leaflet to be visualized between the

jaws of the NeoChord device and led to consistent bite depths. Achieving a full bite depth

is important for preventing dehiscence of the neochordae. This complication is more com-

mon in patients with poor tissue quality and may require the implantation of additional

neochordae or intraoperative conversion to an alternative surgery [28]. However, achiev-

ing proper spacing of the implanted neochordae was difficult. We believe the main reason

for this was cognitive load as the user needed to divide attention between the ICE imaging

used for leaflet capture and the 3D TEE imaging needed to monitor the position of the Neo-

Chord tool along the length of the leaflet. Even with the augmented reality system where

previously deployed neochordae were shown, it was easy to over fixate on the ICE images

as the jaws of the NeoChord were being closed. The user frequently would let the position

of the tool drift significantly during leaflet capture before detecting the problem in the 3D
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TEE images and repositioning the tool. These difficulties could be mitigated through more

training and improvements to the AR environment such as providing feedback if the tool

is moved during leaflet capture. It should be noted that user experience plays a large role

in traditional procedures with experienced surgeons requiring significantly fewer attempts

and less time to grasp the leaflet[29] and this study was limited by using only a single non-

expert user. While the rapid-prototype tool provided a means of developing the custom

valve implantation tool, it was not as mechanically robust as the original NeoChord DS-

1000 and a sturdier material is required to make a device suitable for larger scale animal

and phantom experiments.

2.4 Conclusion

Here we presented AR guidance systems for TAVI and minimally invasive mitral valve

repair. Although these results are preliminary, in both systems we demonstrated how ultra-

sound imaging could be integrated directly into the surgical tool assist in final positioning

and deployment. In the TAVI system both the AR and AR+ICE systems were tested in a

phantom environment and compared against fluoroscopic guidance. The standard deviation

in deployment depth using fluoroscopic guidance was 3.4mm providing a lower bounds for

the RMSE deployment error. The RMSE for the AR system was also found to be 3.4mm

using AR alone and 2.3mm when ICE imaging was integrated into the delivery tool. These

results show that an augmented reality system may achieve similar or better results than

contrast enhanced fluoroscopy while eliminating the use of nephrotoxic contrast and ioniz-

ing radiation. The proposed system used only intraoperatively defined anatomy resulting in

simplified clinical workflow without requiring preoperative models to be registered to the

intraoperative TEE. In addition, the tool with integrated ICE provided real-time imaging
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during valve deployment that shows the position of the stent relative to the native aortic

valve. In these experiments, the ICE imaging decreased the error in valve deployment. In

addition, the direct imaging of the stent and pertinent anatomy provides an extra layer if

there were errors in tracking the stent or in the definition of the aortic valve. The phan-

tom study presented here provides a direct comparison of these techniques to fluoroscopic

guidance on a larger scale than feasible in animal studies.

Integrated ICE imaging was then applied to mitral valve repair where it was incorpo-

rated into a modified NeoChord DS-1000. The augmented reality environment used in this

experiment was developed for the targeting task where the tool is navigated to the mitral

valve annulus. The surgeon would then switch to using the live TEE for positioning the

NeoChord device and grasping the leaflet. However, by including the ICE images in the

virtual reality environment we were able to provide the real-time feedback necessary for

the positioning task within a unified guidance system. The virtual representation of the

valve annulus, while on its own not useful during leaflet grasping, added valuable context

to the ICE images. This on-site ultrasound imaging appears very promising for achieving

consistent bite depth and can provide detailed images showing the leaflet being captured

between the jaws of the NeoChord device. Although previously deployed neochordae can

be easily identified from the ICE images it was difficult to use this information to deploy

additional chordae at an adjacent site. In the future, this difficulty could be ameliorated

through user training and improvements to the AR environment.
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Höbartner, Martin Misfeld, Michael A Borger, and Friedrich W Mohr. Trans-apical

beating-heart implantation of neo-chordae to mitral valve leaflets: results of an acute

animal study. European Journal of Cardio-Thoracic Surgery, 41(1):173–176, 2012.



www.manaraa.com

Chapter 3

Detection and Visualization of Dural

Pulsation

This chapter includes material adapted from:

A. Jonathan McLeod, John S.H. Baxter, Golafsoun Ameri, Sugantha Ganapathy, Terry M.

Peters, and Elvis C.S. Chen. Detection and visualization of dural pulsation for spine needle

interventions. International Journal of Computer Assisted Radiology and Surgery 10(6):

947-958, 2015.

3.1 Introduction

Epidural injections are a common intervention with an estimated 293 000 procedures per-

formed annually in the United Kingdom [1]. There is increasing interest in using perioper-

ative epidural injection as concurrent epidural and general anesthesia reduces the morbidity

and mortality for a wide variety of surgeries [2]. Accurate localization of the dura is critical

65
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in epidural and spinal anesthesia as advancing the needle too far has the potential to cause

severe damage to the spinal cord, resulting in long-term neurological complications. In

epidural injections, the analgesic must be injected into the epidural space inside the spinal

canal but outside the dura. This procedure is traditionally performed using a blind tech-

nique in which the vertebral interspace is identified solely using palpation and the needle

depth is determined by the anesthetist feeling for a loss of resistance indicative of the nee-

dle puncturing the ligamentum flavum and entering the epidural space. Spinal anesthesia

is performed similarly, but the needle is inserted through the dura and the anesthetic in-

jected into the subarachnoid space using a smaller needle delivering much less anesthetic.

Without image guidance, even identifying a specific vertebral interspace is a challenging

task where experts are successful in fewer than half the cases [3, 4]. Multiple attempts at

needle insertion are common [5, 6], and a small but significant number of cases result in

long term complications [7]. Spinal ultrasound, acquired from a midline or paramedian

view, is becoming increasingly common in spinal needle interventions [8, 6]. Ultrasound

guidance can significantly reduce the number of failed and traumatic procedures as well

as the number of needle insertion attempts per procedure [9]. The vertebrae are readily

visible in US, aiding in selecting the needle trajectory, but the image quality is poor within

the spinal canal making it difficult to locate the dura and other important features.

However, the changing pressure of the cerebral spinal fluid throughout the cardiac cycle

caused by the vascularization of the brain and spinal cord results in a subtle pulsation of the

dural membrane which can be perceived in US. The visual presence of dura pulsation also

confirms the correct paramedian position of the US probe as it indicates the presence of

a large acoustic window between the vertebra which may be suitable for needle insertion.

This pulsation is a valuable cue for identifying the dura, and ensuring that the needle is
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inserted to the appropriate depth, but it is only perceived in approximately 30% of cases

[6].

Currently, there is no suitable technique for detecting dural motion. While anesthetists

have become accustomed to using Doppler US to detect important vessels in other nerve

block procedures, identifying dural pulsation through Doppler US is challenging because

of the low velocity of the motion, which is often orthogonal to the beam direction. Speckle

tracking techniques are another alternative that have been used to assess dural pulsation in

cervical laminoplasty, but require imaging perpendicular to the spinal cord using a view

preselected with MRI [10]. The out-of-plane motion, particularly significant with the para-

median approach, severely degrades methods that rely on explicit motion or velocity es-

timation. This chapter develops a technique to identify and display subtle dural pulsation

that may be missed in an interventional setting by fitting a harmonic model to individual

pixel intensities through extended Kalman filtering. By only looking for periodicity in the

intensity values, this method does not require an explicit motion model and is agnostic to

whether the intensity changes are caused by out-of-plane motion. This method can run

in real-time, requires only the B-mode video, and is easily integrated into existing imag-

ing systems allowing pulsatile motion to be visualized on the original US image or in an

augmented reality guidance system.

3.1.1 Related Work

Recently, there has been great interest in motion magnification techniques that can reveal

almost imperceptible motions within a specified frequency band [11, 12, 13, 14]. The

earliest of these methods, Liu et al. [11] tracked a dense collection of feature points auto-

matically generated from a video, clustering them by the coherence of their motion. These
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feature points could then be used to create motion maps which can be exaggerated or fil-

tered accordingly. Wu et al. [12] proposed a fundamentally different technique by detecting

changes in intensity on a pixel-by-pixel basis, eliminating the need for tracking features.

This framework used a Laplacian pyramid to decompose the picture into a collection of

frequency bands, each of which was subjected to temporal bandpass filtering on a pixel-

level. The filtered signals were amplified and added back into the originals to synthesize

a video with exagerated motions. Wadwa et al. [13, 14] built on this approach by filtering

local phase instead of intensity which greatly improved the results on natural video. These

frameworks were first used in the context of surgical interventions by McLeod et al. [15] in

robot-assisted prostatectomy, and Amir-Khalili et al. [16] in robot-assisted partial nephrec-

tomy. Rather than simply enhancing motion, Amir-Khalili et al, performed a multiscale

segmentation using the filter response at different levels of the steerable pyramid.

Other work has focused on segmenting or detecting periodic motion in natural images.

Sietz and Dyer [17] investigated the detection and classification of periodic motion after

being transformed by a time-varying affine operator which they used to model a camera

projection operator, but required explicitly tracking points on the object of interest. Polana

and Nelson [18] developed a framework for periodic motion detection of tracked objects

using Fourier analysis and harmonic detection on a motion field estimated between suc-

cessive image frames. Cutler and Davis [19] presented a similar framework in which a

similarity plot compares pairs of frames in which the tracked object is isolated in a bound-

ing box. The power spectrum or autocorrelation of this similarity plot is used to detect the

significant frequencies of the signal associated with periodic motion.

More recent work has focused on pixel-by-pixel analysis within the tracked patch, seg-

menting the periodically moving object. Briassouli and Ahuja [20] developed an approach
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for tracking multiple periodically-moving objects through their projections onto the x and

y axes while Ran et al. [21] used a spectral analysis of each pixel intensity within a tracked

patch to detect periodicity. Pogalin et al. [22] extended this approach by using princi-

ple component analysis to capture a compact representation of the temporal variation in

the video so that where periodicity was present it was concentrated in a small number of

principle components.

3.1.2 Contributions

This chapter presents a framework for the automatic detection and localization of subtle

periodic motion in US images, specifically very low velocity and out-of-plane motion that

cannot readily be detected by Doppler utlrasound. This framework, which uses extended

Kalman filtering to fit a periodic model to the image intensity in a tracked image patch,

is computationally inexpensive, and runs in real-time on a clinically available ultrasound

machine, SonixTouch (Ultrasonix, Richmond, BC, Canada).

While previous approaches for periodic motion detection have focused on natural im-

ages with low background motion, ultrasound images present unique challenges. Even

small breathing and probe motion, combined with the speckle, cause background pixels to

exhibit more complex noise dynamics. This poses a distinct limitation for methods mak-

ing the assumption of white background noise. Instead this framework fits a sinusoidal

model with time-varying parameters using an extended Kalman filter. This approach is

more computationally efficient than spectral techniques and segmentations based on the

fitted parameters appear more robust to the background noise dynamics. This framework is

presented and validated in the context of detecting otherwise imperceptible dural pulsation

for image-guided epidural and spinal anesthesia, using both human and phantom data.
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3.2 Methods

Our goal is to localize the dura by detecting pixels with a periodic intensity signal indica-

tive of motion. Statistical tests for periodicity in a time series date back to Fisher [23] who

derived a test for the presence of a periodic signal from the fraction of the power concen-

trated in the dominant spectral component. Since then, many spectral and epoch folding

methods have been proposed, but their focus has been on offline use. Instead, we fit a har-

monic model to the pixel intensities and use the fitted parameters (frequencies, amplitudes)

as features for detecting pulsatile motion. Kalman filtering is well established for online

model fitting and parameter estimation, and has be used extensively as a frequency tracker

[24]. High order harmonic models have been previously used for modeling cardiac signals

[25] and tracking the position of mitral valve leaflets in US [26].

3.2.1 Extended Kalman Filtering Model

An extended Kalman filter (EKF) is used for estimating the frequency and other pertinent

parameters that can be used to locate periodicity in pixel intensity, z. The state vector, x,

and nonlinear observation model, h(x), are defined as:

x =

[
θ, ω, φ2, . . . φN , A1, . . . AN , k

]>
h(x) = k + A1 sin(θ) +

N∑
n=2

An sin(nθ + φn)
(3.1)

where ω is the estimated fundamental frequency of the signal, A1 and θ are the amplitude

and phase at said frequency. A2 . . . An and φ2 . . . φn are the amplitudes and relative phases of

the first N harmonics. The analytic Jacobian for the observation model can be easily derived



www.manaraa.com

3.2. Methods 71

from these equations, yielding the extended Kalman filtering estimation framework:

State estimation: xk|k−1 = Fxk−1|k−1 where F =


1 1

0 1
0

0 I


Estimation covariance: Pk|k−1 = FPk−1|k−1F> + Q

Residual: ỹk = zk − h(x)

Residual covariance: S k = HkPk|k−1H>k + R where H =
δh
δx

∣∣∣∣∣
xk|k−1

Kalman gain calculation: Kk = Pk|k−1H>k S −1
k

State estimation update: xk|k = xk|k−1 + Kkỹk

Estimation covariance update: Pk|k = (I − KkHk)Pk|k−1

(3.2)

with all parameters except the phase, θ, following a random walk. In this framework, state

transitions are linear, allowing F to be a constant state transition matrix. H is the Jacobian

matrix associated with the nonlinear observation model, P the state estimate covariance

matrix, Q the (constant) state noise covariance, and R the (constant) pixel intensity noise

covariance. ỹ and S are the residual and residual covariance respectively.

One issue with this model is that it is easily trapped in local minima, particularly when

the frequency is near zero. This can be mitigated by constraining the frequency parameter

by restricting its value using Parameter Clamping, a well established method of applying

inequality constraints in Kalman filtering [27]. Therefore, we clamp the EKF frequency to
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be between 30bpm and 180bpm. Another issue with this model is that patient and probe

motion can corrupt the periodic signal. This can be mitigated by applying a patch track-

ing algorithm that minimizes the sum of absolute differences (frame-to-frame translations

within a 3 pixel radius) to track the ROI as this motion occurs.

The state vector of this model can be seen as a feature vector for each pixel and used

for detecting and visualizing the dura. The frequency, amplitudes, and relative phase of

higher order harmonics help characterize the motion at that pixel. For real-time appli-

cations, we found simply thresholding the fundamental frequency and its amplitude was

sufficient to localize the dura. A heat map showing the amplitude at the fundamental for

pixels within this segmentation helps visualize where the pulsation was strongest. In this

study the thresholds were interactively specified by the user, but in future could be auto-

matically determined from the state data. While processing higher order harmonics can

help model the periodic intensity caused by pulsation, the increase in model complexity

and computational costs were unnecessary for visualizing these structures.

3.2.2 Frequency Smoothing

While the EKF can be applied to each pixel independently, this ignores all information

about the local neighborhood. In particular, the frequency estimates obtained from a single

pixel can be very noisy. Ideally, the EKF would observe all pixels within a neighborhood

but this greatly increases the memory and computational requirements. Faster and more

stable convergence can be achieved by extending the model with a perfect observation of

the average frequency of the surrounding 3-by-3 neighborhood:
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z̄ =

 z

ω̄

 ,

x̄ =

 x

ω̄

 ,

Q̄ =

 Q 0

0 ε

,

R̄ =

 R 0

0 0

,
F̄ =



F

α

α

0
...

0 . . . 1


(3.3)

where ε → 0 and ω̄ is the difference between the frequency of the pixel and the amplitude

weighted mean frequency of the neighborhood. This improves the random walk model of

the frequency estimate by causing it to drift towards the local mean. A parameter α ∈ [0, 1]

was introduced to control the degree of this drift. This method is equivalent to spatially

smoothing the frequencies weighted by their amplitude after each update phase of the EKF

algorithm. This frequency smoothing is more efficient and numerically stable than ap-

pending the local frequency into the observation model and so permits a simpler and more

efficient implementation.

3.3 Results

3.3.1 Synthetic Images

To verify robustness to noise and quantization error, this approach was tested on a set of

synthetic videos consisting of a pulsating target located in the center of an otherwise static

background. The target was a circle of radius 7 pixels whose intensity varied sinusoidally

with an amplitude of 5 intensity levels at a frequency of 60 bpm sampled at 38 fps. Three

levels of frequency smoothing were used where Gaussian white noise has been added with

σ’s of 0, 1.25, 2.5, and 3.5 intensity levels, the latter three corresponding to SNR’s of 8, 2,
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and 1 respectively.

Figure 3.1 displays the results of the synthetic experiment after 5 seconds of filtering.

Frequency smoothing improved the performance of the filtering which was particularly no-

ticeable at higher noise levels in which it helped to reduce the effects of noise in the back-

ground resulting in a much cleaner segmentation with fewer erroneously segmented pixels.

In all cases, the error in estimated amplitude for the pulsating structure was negligible.

Figure 3.1: The detection of pulsation in synthetic images is shown for varying levels
of white noise and the frequency smoothing parameter, α. A small amount of frequency
smoothing greatly improves periodicity segmentation.

3.3.2 Human Data

Two paramedian US videos, acquired at 43 and 38 fps from two healthy humans, were pro-

cessed retrospectively. The EKF detects the relevant pulsation in both subjects within five

seconds, which can easily be incorporated into the current clinical work-flow. To visualize
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the pulsation a segmentation was generated by thresholding based on the estimated param-

eters. This included all pixels with an estimated amplitude greater than 0.5 and a frequency

within ±25% of 75bpm (54 frames per beat) and 60bpm (38 frames per beat) for the first

and second videos respectively. A heat map showing the amplitude of these pixels was

overlaid on the original images as shown in Figure 3.2. In practice, this target frequency

can be adjusted interactively to estimate the heart rate and generate the visualization.

A time-profile taken through the center of the pulsating dura shows an oscillation in

intensity for approximately two seconds before being detected by the EKF and rendered as

a color overlay. The output of the EKF is also shown as it tracks this periodicity in pixel

intensity in Figure 3.3 along with the corresponding state estimates.

For comparison, we examined the pixel-wise spectrum obtained from the video using

the fast Fourier transform on the ROI after registration. Ran et al.[21] advocate using the

ratio of peak power in the spectrum to the variance of the signal. This ratio is Fisher’s g

statistic for periodicity and has a known distribution under the assumption of white Gaus-

sian noise, in which case thresholding is equivalent to a likelihood ratio test [28]. In ad-

dition to this statistic, we generated an alternate visualization using the same thresholds

and priors on heart rate but based solely on the spectrum of the pixel intensities as shown

in Figure 3.4. While more complex spectral estimation techniques go beyond the scope

of this chapter, these visualizations show that directly using the frequency and amplitudes

obtained through a Fourier transform or using Fisher’s statistic for periodicity are not suffi-

cient to detect the dura. It should also be noted that real-time Fourier analysis introduces its

own challenges as a sufficiently large buffer of previous data must be stored and analyzed

at every iteration.
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Figure 3.2: Retrospective processing was performed on the two human videos in the re-
gion of interest covering the spinal canal (shown in green) and the detected pulsation is
visualized using a heat map. A time-profile view taken from the yellow line is displayed
below the corresponding image. The Kalman filter output along with all of its states with
respect to time are shown in Figure 3.3 at the point denoted by the yellow asterisk in the
first image.
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(a) Intensity of the video (black) and EKF prediction (red)

(b) Fundamental frequency estimate

(c) Amplitude estimate at fundamental frequency

(d) Phase estimate at fundamental frequency

(e) Local level estimate

Figure 3.3: The pixel intensity and EKF prediction along with associated EKF estimates of
fundamental frequency, amplitude, phase, and local level are shown at the point denoted by
the yellow asterisk in Figure 3.2. The frequency converges after approximately 5 seconds.
The local level is modeled by a random walk and takes into account most of the large
non-periodic changes in intensity.
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(a) (b) (c)

Figure 3.4: Results of the periodic visualization using the proposed method (a). Same vi-
sualization using the frequency and amplitudes obtained from spectral analysis (b). Image
showing Fisher’s statistic for periodicity (c).

(a) (b)

Figure 3.5: Amplitude spectrum of intensity within the entire ROI (a) and within the pe-
riodic segmentation using the proposed method (b) for the first human video. The peak
in amplitude around 0.2rad/ f rame is much more pronounced in the segmented region
where the fundamental frequency and first three harmonics are clearly visible. However,
the spectrum is still dominated by lower frequency noise and naive spectral analysis per-
forms poorly.
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The proposed method performed much better than simple spectral analysis techniques.

To investigate this observation in more detail we plotted the amplitude spectrum of the en-

tire ROI, as well as the spectrum of only the segmented pixels (Figure 3.5). Both spectra

are clearly not consistent with white noise and are dominated by low frequencies. This

causes severe problems with the spectral techniques unless a whitening filter or other ap-

propriate preprocessing is applied. Brownian noise is associated with 20dB/decade falloff,

an apparent slope of −45◦ in Figure 3.5, which is much closer to the observed spectra and is

consistent with the random walk model of the local level included in the Kalman filtering.

Treating the remaining parameters as time-varying also adds more robustness to unmodeled

dynamics.

3.3.3 Interventional Phantom

Lastly, the method was tested on a spinal phantom designed for training in spine needle

procedures [29]. This phantom consists of five major components: a 3D printed spine

segmented from a patient CT, silicone rubber tube simulating the ligatum flavum, latex

tube simulating the dura, polyvinyl chloride-plastisol simulating fat, and a layer of opaque

silicone rubber for the skin. Dural pulsation was induced at 60 bpm using a small motor.

The phantom is shown in Figure 3.6.

Our software implementing this framework was instantiated on the US system (Sonix-

Touch, Ultrasonix, Richmond, British Columbia) and a paramedian view was emulated.

The amount of pulsation in the dura could be controlled to generate more subtle pulsation

than present in our human videos. The algorithm was able to run at 18 frames per second

on the US machine with a region of interest covering the vertebral interspace. After ap-

proximately 4 seconds, very subtle pulsation was detected and revealed (Figure 3.7). The
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Figure 3.6: Spinal phantom consisting of 3D printed L2 to L5 vertebra surrounded by fat-
mimicking polyvinyl chloride-plastisol. Pulsations of the dura-simulating latex tube were
mechanically actuated at approximately 60 bpm.

peak-to-peak intensity amplitude in the area detected was approximately 6 intensity levels

in an 8 bit image and at the edge of human perception. This pulsation was only noticed

retrospectively after being detected by the filter.

To quantitatively evaluate the efficacy of our proposed motion detection framework, an

expert anesthesiologist performed a sequence of epidural injections on this interventional

phantom both with and without motion detection applied. Injection sites were chosen in

the intervertebral spaces between L2-3 and L4-5 inclusive on both the left and right sides.

A total of 12 trials were performed. For each trial, the injection was performed twice, once

with and once without motion detection. The order in which the injections were performed

was randomized to mitigate the effects of learning, fatigue, and any degradation of the

phantom, such as residual needle tracks, between injections.
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Figure 3.7: US acquired on phantom showing user defined region of interest in green and
detected pulsatile motion in red is shown top left. A zoomed in view of the region of interest
is shown top right. A time-profile taken across the yellow line is shown bottom left. The
intensity time series at the points a, b and c are shown bottom right. As the processing
was performed in real-time on the US machine with only the output visualization being
captured by a second computer, the internal state of the EKF is unavailable.

These paired injections were measured in terms of the normalized path length, which is

the length of the needle trajectory normalized by the shortest distance between the start and

end points, the number of attempts taken to successfully complete the injection procedure,

and the time taken for the injection. Figures 3.8, 3.9, and 3.10 display the results for each

measure, respectively. Although not tested for, due to low sample size, no obvious learning

effect or fatigue is visible in any of performance metric graphs.

The differences between the results are presented in Table 3.1. Statistically significant

differences were found between the two methods for the normalized path length using a
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paired t-test (p = 0.007) and the number of attempts using a nonparametric permutations

test (p = 0.016). No significant difference was found in the procedure time (p = 0.138).

Figure 3.8: Normalized path length for mock epidural injections

Figure 3.9: Number of attempts for mock epidural injections
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Figure 3.10: Time required for mock epidural injections

Table 3.1: Numerical results for mock epidural injections

With Motion
Detection

Without Motion
Detection

Normalized Path Length 3.0 ± 3.2 5.4 ± 4.4
Number of Attempts 1.7 ± 1.4 2.7 ± 2.1

Time (sec) 12.0 ± 11.2 15.7 ± 9.0

3.4 Discussion

This approach has several advantages, in particular, its computational efficiency and real-

time capabilities allow for ready integration into any clinical US with video output capa-

bilities, with minimal impact on clinical workflow.

Using our current implementation, running the AR environment was difficult due to

limited computational resources on a clinical US machine (SonixTouch, Ultrasonix, Rich-

mond, British Colombia) and the region of interest was set sufficiently large as to cover the

spinal canal while maintaining an acceptable frame rate. This problem could be resolved
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by upgrading to a version of the US machine that allows for GPGPU acceleration or by

processing on a secondary computer.

The two US videos of healthy humans are not representative of the full patient popula-

tion, but still provides a valuable proof-of-concept demonstration. Phantom images were

employed to show the detection of very subtle pulsations that are on the edge of human

perception. Future work in this area will include retrospective patient studies to account

for this limitation, as well as more extensive validation through user studies on patient data

and mock procedures performed on the phantom. In addition to traditional B-mode images,

this method could be used to enhance in-plane periodic motion observed in both Doppler

imaging and speckle tracking.

3.4.1 Augmented Reality Environment

The proposed framework can also improve more complex AR guidance systems for needle

insertion by showing the location of the pulsating dura in the virtual environment. An

augmented reality (AR) environment with an associated magnetic tracking system (NDI

Aurora, Waterloo, Ontario) was used to show the tracked US in relation to a spine model

and tracked surgical tools. The AR environment was displayed on the US screen side-by-

side with a second view consisting solely of the US image. Both views were enhanced with

the proposed EKF-based coloring mechanism.

In phantom experiments, the position of the spine can be determined a priori, but in a

practical implementation the spine model would need to be obtained through registration

with preoperative images or a generalized atlas [30]. Future work in analyzing the clinical

efficacy of this framework will be centered around whether or not pulsation detection and

AR combined improve performance on these needle insertion tasks (Figure 3.11).
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Figure 3.11: US image acquired with a midline view is shown on the left. The correspond-
ing AR view with the needle being inserted is shown in the center. The AR system is also
shown simulating a paramedian view on the right. The detected pulsation localizes the dura
inside the spinal canal as seen in the AR views.

3.5 Conclusion

We found that subtle dural pulsations could be detected using this technique. While the

EKF can generate a rich feature vector, simple thresholding of the estimated frequency and

amplitude was sufficient to localize the dura. This model based approach was robust to

background motion and noise present in the ultrasound videos. When used in mock pro-

cedures on a phantom, the pulsation visualization substantially decreased the normalized

path length and number of attempts required to reach the epidural space. This method can

be integrated directly into clinical scanners or on a separate computer receiving a video

feed from the US. In this study, we used synthetic, human, and phantom images to validate

this technique. The results presented here show promise in providing useful information in

an interventional setting that we expect will provide great clinical benefit in spine needle

interventions.
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Chapter 4

Analysis of Periodicity in Video

Sequences through Dynamic Linear

Modeling

This chapter includes material adapted from:

A. Jonathan McLeod, Dante P.I. Capaldi, John S.H. Baxter, Grace Parraga, Xiongbiao Luo

and Terry M. Peters, Analysis of Periodicity in Video Sequences through Dynamic Linear

Modeling. In ”Medical Image Computing and Computer-Assisted Intervention – MICCAI

2017 [In Press].

4.1 Introduction

Analyzing quasiperiodic variations in a video sequence is frequently performed in medical

imaging with the goal of extracting information related to the cardiac or respiratory cycles.

91
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Natural video of a person’s face or hand can be used for non-contact monitoring of vital

signs including heart rate, respiratory rate, and pulse transit time [1, 2] or to generate maps

showing the spatial distribution of tissue perfusion [3, 4]. Fourier-decomposition MRI is

an emerging technique for imaging lung perfusion and ventilation that relies on Fourier

analysis of a sequence of non-contrast enhanced MR images [5]. Another area where pe-

riodicity is useful in medical imaging is in the detection of critical pulsating structures in

medical interventions [6, 7, 8, 9]. Most of these techniques require extensive filtering and

preprocessing that have been fine-tuned for their respective problems. This is necessary to

produce a sufficiently clean periodic signal that can be extracted through Fourier analysis

or band-pass filtering.

In this paper we propose the use of dynamic linear modeling for analyzing periodicity in

video sequences. We show how a cyclic + random walk model can be used to estimate the

frequency and amplitude of quasi-periodic components. We also propose a log-likelihood

ratio statistic for determining the presence of periodicity. In addition, we derive the power

spectral density function for this model and show that it closely resembles that of the ob-

served spectrum commonly found in video sequences. This approach is applied to natural

video, ultrasound and MRI.

4.2 Methods

4.2.1 Dynamic Linear Models

Dynamic Linear Models (DLM) are linear state-space time series models [10] of the form,

yt = Zat + εt, εt ∼ N(0,Σε), at = Tat−1 + ηt, ηt ∼ N(0,Ση), (4.1)
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where yt and at are the observation and state vectors at time t. The observation and state

transition matrices are Z and T with independent normally distributed noise covariances Σε

and Ση. Often these are block diagonal matrices formed from several simpler models whose

parameters have an intuitive or physical meaning. Maximum likelihood estimates (MLE)

for unknown parameters in Z, T , Σε and Ση can be obtained by numerically optimizing the

log-likelihood function,

log L(θ|Yt) =
∑

log p(yt|Yt, θ), (4.2)

where Yt denotes the vector of observations up to time t, θ are the unknown model pa-

rameters and p(·) is the probability density function. Kalman filtering is used to evaluate

log L(θ|Yt).

We propose a nested DLM to model quasi-periodicity in video sequences. This model

consists of a stationary cyclic component, random walk component and additive measure-

ment noise as specified in Equation 4.3,

Z =

[
1 0 1

]
, T =


ρ cosω0 ρ sinω0 0

−ρ sinω0 ρ cosω0 0

0 0 1

 , Σε = σ2
n, Ση =


σ2

c 0 0

0 σ2
c 0

0 0 σ2
l

 .
(4.3)

The parameters ω0 and ρ represent the frequency and bandwidth of the cyclic component.

The variances σ2
c , σ2

l and σ2
n specify the strength of cyclic, random walk and additive noise

components respectively. In the state vector, at = [at,1, at,2, at,3]T , the first two states, at,1,

and at,2 are analogous to the real and imaginary components of a complex oscillator, while

the third state, at,3 follows a random walk to account for signal drift and other low frequency

variations. The model observation matrix, Z, adds at,1 and at,3 to obtain a cyclic model with

a local level that follows a random walk.
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The power spectral density of the model can be derived by breaking apart the cyclic

and random walk components. Transfer functions from the cyclic component state noise

ηt,1 and ηt,2 to the output yt can be obtained directly from the state-space model:

G1(z) =
z − ρ cos(ω0)

z2 − 2ρ cos(ω)z + ρ2 ,G2(z) =
−ρ sin(ω0)

z2 − 2ρ cos(ω)z + ρ2 , (4.4)

where G1(z), G2(z) are the respective transfer functions and z is the forward shift operator.

The power spectral density can be obtained by evaluating the transfer functions at z = e jω

yielding,

S cyclic
yy (ω) =

σ2
c(1 + ρ2 − 2ρ cosω0 cosω)

[1 + ρ2 − 2ρ cos(ω − ω0)][1 + ρ2 − 2ρ cos(ω + ω0)]
. (4.5)

The random walk is non-stationary with a well known frequency drop-off approximately

proportional to ω−2. An exact expression for its power spectral density, S rw
yy (ω), with a finite

length time series can be obtained through Fourier analysis where the Fourier transform of

the random walk state, at,3, is expressed in terms of the incremental state noise, ηt,3:

F(at,3) =

N∑
i=0

F(ηi,3H(t − i)), (4.6)

where F is the discrete Fourier transform operator and H(t) is the Heaviside function. Since

ηt,3 are independent random variables, the power spectral density can be obtained from the

expected value of Equation 4.6 as,

S rw
yy (ω) = E|F(at,3)|2 =

N∑
i=1

E|F(ηt,3H(t − i))|2 =
σ2

l

1 − cosω
. (4.7)

The total power spectral density for Equation 4.3 is obtained from Equations 4.5 & 4.7 plus
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the white additive measurement noise,

S yy(ω) =
σ2

c(1 + ρ2 − 2ρ cosω0 cosω)
[1 + ρ2 − 2ρ cos(ω − ω0)][1 + ρ2 − 2ρ cos(ω + ω0)]

+
σ2

l

1 − cosω
+ σ2

n. (4.8)

As can be seen in Figure 4.1, the power spectral density of the model slopes downward

at -20dB/decade with a small peak near ω0 corresponding to the cyclic component. This

closely resembles the empirical spectrum observed in Figures 4.2 & 4.4. When σ2
c → 0,

the cyclic component vanishes and we are left with just the random walk and additive noise

also known in structural time series as the local level model. Thus, to test for the presence

of a cyclic component, we can test H0 : σ2
c = 0 against simple negation. Let θ̂0 denote

the MLE in the restricted model, σ2
c = 0. Then, if H0 is correct, the likelihood-ratio test

statistic,

D = −2[log L(θ̂|Yt) − log L(θ̂0|Yt)], (4.9)

measures the relative plausibility of H0. We use D to test for periodically varying regions

in the video.

4.2.2 Experiments

To demonstrate the effectiveness of this model, we considered three very different datasets

consisting of MRI, ultrasound and natural video. The first dataset consisted of natural video

of a human hand. We demonstrate how DLM can be used to estimate the frequency (heart

rate) and amplitude (perfusion map) from the video. Next we apply DLM to an ultrasound

video of the lumbar spine where pixels in the dura exhibit subtle pulsation. Here we use

the likelihood ratio statistic, D, to test for the presence of periodicity. Finally, we consider

a free-breathing lung MRI sequence where local ventilation images can also be generated
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Figure 4.1: The analytic spectrum of the DLM given in Equation (4.8) and convergence of
the MLE of model parameters are verified through numerical simulations. These graphs
are shown for ω0 = 0.3, ρ = 0.95, σc/

√
(1 − ρ2) = 5σl = 5σn

.

from DLM.

4.3 Results

4.3.1 Natural Video

The photoplethysmogram (PPG) is an optical measurement of cardiac activity. While in-

frared light is typically used in pulse oximeters due to better tissue penetration depth, the

ubiquity of digital cameras has led to increasing interest in monitoring vital signs using

ambient visible light. These systems have the advantage of monitoring vital signs remotely

without requiring carefully controlled lighting or any direct contact with the patient. Meth-

ods have been proposed to extract heart rate, respiratory rate, and pulse transit time from

videos of a person’s face or hand [1, 2]. Beyond simply measuring vital signs, it is also

possible to generate spatial maps showing variations in the magnitude of the PPG signal



www.manaraa.com

4.3. Results 97

[3, 4]. PPG imaging has the potential to show tissue perfusion relevant to many clinical

problems such as evaluating skin-flaps and burn injuries. These techniques typically re-

quire extensive preprocessing to detrend the PPG signal and remove the effects of motion

or variations in ambient light. For this experiment 8 videos were acquired showing the

hands of seven subjects. Videos 1& 2 were acquired of the same subject to demonstrate

perfusion mapping. The hand was gently scratched between these aquisitions to stimulate

blood flow. This test has been previously used for perfusion mapping techniques based on

PPG imaging [3] and laser Doppler imaging[11].

First, we demonstrate that heart rate can be estimated from all 8 videos. A PPG signal

was extracted by averaging the green channel intensity over a 400x400 block as shown in

Figure 4.2. The proposed DLM was fit to the PPG signal and the estimate of ω0 compared

with the Fourier spectral peak and the readings from the pulse oximeter (Table 4.1). The

absolute error between DLM frequency estimation and the nearest pulse oximeter reading

was 2.3 ± 1.0 bpm (mean ± standard error). This was significantly lower (p < 0.05) than

the estimates through simple Fourier analysis or quadratic peak interpolation (QPI) of the

spectral peak, which were 5.4 ± 1.3 and 3.8 ± 1.4 respectively.

Next, to generate perfusion maps, the DLM is fitted on a per pixel level for videos

1&2. Here, the amplitude of the cyclic component corresponds to perfusion. The original

1080x1920 videos were reduced to 135x240 by applying a Gaussian blur with σ = 8 and a

Table 4.1: Heart rate estimated from the eight video clips (bpm)

1 2 3 4 5 6 7 8 Abs Err
DLM 84 .1 79.6 86.6 89.1 73.6 78.5 55.1 63.3 2.3 ± 1.0
Fourier 84.0 72.0 84.0 84.0 72.0 84.0 60.0 60.0 5.4 ± 1.3
QPI 82.7 76.4 83.7 86.9 70.7 82.8 55.7 63.1 3.8 ± 1.4
Pulse Ox. 84 82 94-98 90-91 79 80-81 56 63-65
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Figure 4.2: Video clips were recorded of the subjects’ hands and the PPG signal was calcu-
lated from the average intensity over the 400x400 box. The -20dB/decade slope observed
in the spectrum is consistent with the proposed DLM.

down-sampling factor of 8. The DLM was fit with the frequency fixed to the MLE estimate

given in Table 4.1. The quantity σc/(
√

1 − ρ2), corresponding to the amplitude of the cyclic

component, is shown in Figure 4.3. For comparison, the Fourier estimates of amplitude are

also shown.

Without any preprocessing or tuning for this specific problem, a relatively simple DLM

was able to identify very subtle changes in tissue perfusion that occurred after gently

scratching the hand. Furthermore, this was accomplished with very short video clips only

5 seconds in length unlike previous methods that required much longer video clips and

extensive preprocessing and detrending.

4.3.2 Ultrasound

Dural pulsation is a valuable cue in ultrasound guided epidural injections. Previously,

McLeod et al.[8] proposed an extended Kalman filtering (EKF) method that estimated fre-

quency and amplitude of the pulsating dura on a per-pixel basis in lumbar spine ultrasound.

Here, our main objective is to identify which pixels in the image exhibit periodicity. The
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Figure 4.3: PPG imaging using Fourier analysis and DLM. The yellow arrow indicates
where the hand was scratched.

likelihood-ratio statistic in Equation 4.9 is ideal for this purpose. We fit the proposed DLM

on a per-pixel basis to a video of the lumbar ultrasound and compared it against those ob-

tained from the EKF method in McLeod et al [8]. The results are nearly identical despite the

EKF having being developed for this application only, and requiring extensive smoothing

and tight thresholds on the frequency and amplitude (Figure 4.4).

4.3.3 MRI

Fourier-decomposition of free-breathing proton MRI (FDMRI) has recently emerged as a

non-contrast enhanced MRI technique to generate regional pulmonary ventilation maps on

any clinically available MRI system [5, 12]. This technique exploits fast pulmonary MRI

acquisition and non-rigid image registration to acquire a time series of registered proton

MR images. Since the proton density within lung tissue varies with the respiratory cycle as
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Figure 4.4: The average power spectrum of the lumbar ultrasound ROI exhibits an approx-
imately -20dB/decade slope with a small peak at the cardiac frequency, closely resembling
the theoretical DLM spectrum in Figure 4.1. The likelihood ratio estimated from the DLM
immediately reveals the location of the dural pulsation. The results are very similar to the
hand-crafted EKF method [8].

.

the aveoli expand and contract, periodicity in the signal intensity of the registered images

provides a measure of tissue ventilation. In FDMRI, the amplitude of the Fourier compo-

nent at the respiratory frequency is used as a measure of lung ventilation. We acquired a

dynamic free-breathing MRI of a non-small cell lung cancer patient over 125 seconds at

a rate of 4 frames per second where the left lung was obstructed and poorly ventilated. A

hyperpolarized 129Xe MR static ventilation image was acquired as a benchmark and shows

a lack of ventilation in the left lung. The DLM was fit to the MRI sequence (Figure 4.5).

The DLM amplitude map was visually similar to FDMRI, but with slightly better rejection

of background tissue motion. The likelihood-ratio statistic provided a statistical test for

the presence of ventilation. It showed a lack of ventilation in the left lung, only exhibiting

motion artifacts around the lung boundary and was qualitatively closest to the 129Xe MRI.
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Figure 4.5: The benchmark 129Xe MR image is compared with FDMRI and the two DLM
images (amplitude, and likelihood-ratio). The cyan overlays display the ventilation maps
and the yellow arrows point to the lack of ventilation in the left lung. Of the three images
generated from the free-breathing sequence, the DLM likelihood-ratio appears most similar
to the 129Xe MR image.

4.4 Discussion and Conclusion

We have shown how DLM provides a powerful framework for analyzing periodicity in var-

ious video sequences. The same DLM was applied directly to natural video, ultrasound and

MRI without additional preprocessing or fine-tuning and it provided frequency and ampli-

tude estimates, as well as log-likelihood statistic testing for the presence of periodicity. The

main strength of this model is that it provides a general method for analyzing periodicity

in video sequences that typically require individually handcrafted techniques. In addition,

DLM can easily be extended to include multiple frequencies and harmonics, as well as

more advanced background noise models.
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Chapter 5

Microvasculature Segmentation from

B-mode Ultrasound Video Sequences

This chapter includes material adapted from:

A. Jonathan McLeod, Matthew R. Lowerison, Mai Elfarnawany, Sugantha Ganapathy, Ash-

ley Makela, Hon S. Leong, James C. Lacefield, and Terry M. Peters. Microvasculature

Segmentation from B-mode Ultrasound Video Sequences. Ultrasound in Medicine and

Biology [In Preparation]

5.1 Introduction

Power Doppler ultrasound is frequently used to assess the efficacy of anti-angiogenic drugs

in preclinical studies as it can image microvasculature in vivo without requiring contrast

agent [1, 2]. In these studies, the color pixel density (CPD) can be used as a proxy for the

fractional blood volume within the region of interest [3]. This metric is the ratio of pixels

104
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identified as having blood flow to the total number of pixels within a region of interest and

is also referred to as the vascularization index. To prevent background tissue from being

erroneously identified as blood, the sonographer sets the clutter or wall filter cut-off fre-

quency to reject slow moving tissue. However, tuning the clutter filter to reject artifacts

while showing small, low-flow microvasculature is challenging and must be done consis-

tently throughout the entire study to avoid introducing observer bias. Small vessels missed

by Doppler ultrasound are often visible in the original B-mode video, but are difficult to

quantify.

Another approach is to process the B-mode ultrasound images directly. When a series

of B-mode images is acquired by recording a video or cine loop, the B-mode intensity

values are temporally decorrelated in blood due to the erythrocytes moving with the blood

flow. Previously, Rubin et al. [4] proposed a method for estimating 3D flow vectors and

volume flow measurements from B-mode. This approach fitted a Gaussian function to the

empirical autocorrelation coefficients estimated from the B-mode image sequence and used

the anisotropic beam correlation width together with the in-plane 2D velocity estimated

through speckle tracking or conventional Doppler to estimate the 3D velocity vector. This

approach requires the spatially varying 3D beam correlation width to be characterized, the

log-compression during scan conversion to be inverted and is effective only at high frame

rate.

Yang et al. [5] developed speckle variance flow processing as a simpler technique based

on the variance of the B-mode intensity values with respect to time. Assuming static back-

ground tissue, pixels exhibiting a high variance time-series correspond to moving blood.

They also proposed a real-time alternative where instead of calculating the variance ex-

plicitly, the absolute first differences of the time series could be filtered to give a speckle
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flow index (SFI). Using a flow phantom vessel 1 mm in diameter and 30 frames per second

(fps) B-mode imaging, the SFI was found to exhibit a nearly linear relation with blood

velocity up to velocities of 2 mm/s after which point it became saturated [5, 6]. These

methods for B-mode processing have focused on obtaining velocity estimates of slowly

moving blood with static background tissue and were validated in phantoms where these

conditions could be achieved. In vivo, much of the relevant microvasculature is smaller

than the 1 mm vessel phantoms, significant background motion is present and, in many

cases, blood flow is too fast relative to the imaging frame-rate to obtain measurable auto-

correlation in B-mode signal. While Cheung et al. [7] used speckle variance flow pro-

cessing approach to assess tumor microvasculature in vivo, they thresholded the SFI, using

it as a flow detector, and took the ratio of pixels where blood flow was detected within

the tumor as a metric of vascularization, analogous to CPD metrics in Doppler studies.

In this chapter we focus solely on microvasculature detection and segmentation, which

can be used to compute vascularization metrics similar to CPD. Towards this end we use

Bartlett’s test statistic to distinguish between blood and background tissue by measuring

how closely their cumulative periodograms resemble that of an uncorrelated time series.

This technique tests for regions where the B-mode pixel values are temporally decorrelated

indicative of blood flow. Our proposed method is validated in a chick embryo chorioal-

lantoic membrane (CAM) model, commonly used for angiogenesis studies [8]. Receiver

operating characteristic (ROC) curves are used to compare the B-mode segmentation to

power Doppler imaging on well defined small vessels and qualitative comparison is per-

formed on microvasculature segmentations in ten tumor xenografts. In addition, it can be

used to help declutter traditional power Doppler imaging by removing some of the false

positives caused by background tissue motion.
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5.2 Methods

5.2.1 Bartlett’s Cumulative Periodogram Test

Speckle in images of blood flowing farther than the beam correlation width between frames

is effectively decorrelated. For B-mode video, this typically occurs between 1–2 mm/s

depending on the ultrasound probe resolution and B-mode video frame rate.

In the CAM model the blood velocity of vessels of this size is considerably higher

[9]. As a result, the intensity values of a pixel within a vessel closely resembles white

noise with a very flat spectrum. However, background tissue moving more than the speckle

width can exhibit similar variance but with a very different spectrum. In the CAM mod-

els used in this study, periodic motion induced by the cardiac cycle, spontaneous muscle

movement and low velocity flow within the albumen all result in large background motions.

To separate background tissue from blood flow, we propose using Bartlett’s test for white

noise [10]. This is accomplished by computing the cumulative periodogram of the B-mode

log-compressed intensity on a pixel-by-pixel basis. The Kolmogorov-Smirnov statistic is

then used to compare the observed cumulative periodiogram to the theoretical cumulative

periodogram for a serial uncorrelated time series.

The periodogram, f (ω), of a time series xt : t = 1, ...,N evaluated at the Fourier fre-

quencies ω = 2πk/M for k = 1, ...,M, M = b(N − 1)/2c is

f (ω) =
|
∑N

t=1 xteiωt|2

2πN
. (5.1)
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The normalized cumulative periodogram, F(ω), is given by:

F(ωk) =

∑k
j=1 f (ω j)∑M
j=1 f (ω j)

, (5.2)

If xt is serially uncorrelated, its theoretical cumulative periodogram is simply, Fnull(ωk) =

k
M . The test statistic, D, measures the distance between observed periodogram and this

result:

D =
√

M sup
ω

|F(ω) − Fnull(ω)|, (5.3)

where sup is the supremum. Under the null hypothesis D asymptotically converges to the

Kolmogorov distribution.

5.2.2 Blood-flow Segmentation from B-mode Video Sequences

Using Bartlett’s test statistic, we can distinguish between blood flow and background tissue

motion in a short B-mode video. Figure 5.1 shows Bartlett’s test applied to a five second,

20 fps B-mode video clip of a CAM tumor xenograft. As an example, the cumulative peri-

odograms for a pixel within the tumor’s microvasculture and background tissue are shown

in Figure 5.1b. While the cumulative spectrum of blood closely resembles the theoreti-

cal result for white noise, so do the very low signal regions of the background which are

dominated by electronic noise. A map of the test statistic, D, (Figure 5.1c) shows the mi-

crovasculature inside the tumor mass, the feeder vessels as well as a large artery. However,

much of the low intensity background is also detected. This background can be removed

by thresholding out the low intensity background to only keep soft tissue.

The scatter plot in Figure 5.2 shows that together, the test statistic, D, and mean in-

tensity, µ, separate blood and background tissue with a large margin. Furthermore, many
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Figure 5.1: Bartlet’s whiteness test for identifying blood flow. (a) One frame from five
second B-mode video sequence. To illustrate the computation of the test statistic using
cumulative periodograms, two pixels were chosen in the tumor, one where blood flow ap-
peared to be present in the B-mode sequence marked by the red asterisk, and the other in
background tissue marked by the blue asterisk. The cumulative periodogram at these lo-
cations are shown in (b). The red and blue brushstrokes show the blood and background
pixels used for the scatter plots in Figure 5.2. The blood pixels here come from a larger
vessel so as not to depend on the accuracy of a very challenging segmentation of the mi-
crovasculature. (b) The cumulative power spectral density with the dotted line denoting the
maximum deviation from the theoretical distribution of independent noise from which the
test statistic (D) is computed. (c) A map of the the test statistic, D. (1) A small vessel feed-
ing the tumor (2), the tumor microvasculature (3), and a larger, short-axis vessel all exhibit
low values of D indicating blood flow. (4) High values of D are present where background
tissue was visible in the original B-mode. However, regions of the background with very
low B-mode intensity also have low values of D, despite having no blood flow present (5).

background pixels exhibiting sufficient motion have a similar variance to flowing blood.

Simply looking at the mean and standard deviation of the pixel time-series was insufficient

to separate blood from background tissue.
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Figure 5.2: Scatter plots of the test statistic, D, the mean, µ, and the standard deviation,
σ, of the image intensity taken from the blood and background as sampled in Figure 5.1.
There is a large margin between the blood and background pixels in (a), indicating that
D and µ together can be used to separate blood from background. On the other hand, (b)
shows that variance and mean intensity of blood pixels are within the range exhibited by
background tissue.

To generate a binary mask of the blood flow, simple thresholding of D and µ is applied:

B(x, y) = (D(x, y) < Dth) ∧ (µ(x, y) ≥ µth), (5.4)

where Dth and µth are the thresholds on D and µ respectively and ∧ is the and operator.

This mask can further be refined by removing isolated pixels and holes. In this study we

removed connected components with areas less than nine pixels (3 × 10−3 mm2). Since

the pixels in the B-mode images are sampled at a much higher density than the spatial

resolution, neighbouring pixels were highly correlated and this processing removed the

effects of an isolated error.
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5.2.3 Vessel Images

To evaluate the proposed method for B-mode blood flow segmentation a series videos of

CAM vessels were acquired in an ex-ovo chicken embryo. Each sequence was five seconds

in length with a frame rate of twenty frames per second and showed clear, unambiguous

vasculature within the region of interest (ROI) that was manually segmented. The first

image sequence is dominated by a long axis vessel just under 1 mm in diameter. Several

smaller long and short axis vessel segments are also visible within the ROI and ranged in

size from 60–420 µm. The second image sequence contains a short axis view of an artery

and a vein, each approximately 0.75 mm in diameter, as well as several smaller vessels.

The image sequence shows more complex vascularization, including vessel bifurcations

and vessels of various sizes and orientations. ROC analysis was performed for both the

proposed B-mode flow detection and conventional power Doppler using manual vessel

segmentation as the gold standard.

A 40 MHz micro-ultrasound imaging system (MS-550D probe attached to a Vevo 2100

system, FujiFilm VisualSonics Inc., Toronto, ON, Canada) was used to acquire the beam-

formed, quadrature demodulated (IQ) echo signals from which the Doppler and B-mode

image sequences were reconstructed. This approach ensured that the B-mode and power

Doppler images were acquired simultaneously and allowed the Doppler clutter filter and

color gain to be tuned retrospectively. A conventional reconstruction pipeline was imple-

mented for B-mode and Doppler image processing. The B-mode image sequence was

reconstructed from the background IQ data using Hilbert transform envelope detection

followed by log compression. The power Doppler IQ data were acquired with 11 pulse

repetitions per frame and a third order Chebychev I clutter filter was applied with step ini-

tialization. The power was averaged across all 100 frames, making use of the 5 second
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video to improve the signal to noise ratio in the Doppler images. Blood segmentations

were obtained from the Doppler by applying a threshold, Pth, to the power of the filtered

signal. In this processing pipeline, adjusting the cut-off frequency, fc, and power threshold,

Pth, corresponds to adjusting the wall filter and Doppler gain settings on the scanner.

The values of (Dth, µth) in the B-mode segmentation and ( fc, Pth) in Doppler processing

determine the trade-off between the sensitivity and specificity of the segmentation methods.

Each parameter set defines a classifier for which the true positive rate (TPR) and false

positive rate (FPR) can be calculated and corresponds to a point in ROC space. The convex

hull of these points defines a curve through ROC space representing optimal classification

[11] and the area under the curve (AUC) provides a metric for comparing the performance

of the two methods.

5.2.4 Tumor Xenografts

The second experiment qualitatively compared the B-mode processing to power Doppler

in ten videos of tumor xenografts in a CAM model. These images were acquired as part

of a larger study to perform drug paneling of first-line anti-angiogenic therapies on patient-

derived renal cell carcinoma cell-lines. The tumor samples were obtained from patients

that provided oral and written consent to a University of Western Ontario Research Ethics

Board approved protocol (REB #104278), allowing for the use of surgical specimens for

research at the London Health Sciences Centre. In this study the Doppler and B-mode

data were acquired sequentially with the probe clamped between acquisitions. A Doppler

window, 4.4 mm by 7.0 mm in dimension, was positioned over the tumor xenografts. B-

mode processing was performed on short video clips 51-100 frames in length at 20 fps.

This approach used the machine’s built-in processing with both the Doppler and B-
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mode settings set by an expert sonographer prior to the beginning of the study, producing

higher quality video than realized through our IQ reconstruction pipeline. Our segmenta-

tions are fairly robust to B-mode threshold parameters and Dth = 2 and µth = 0.2 were

chosen for all images in this study. The scanner’s wall filter and Doppler gain settings

were set by the expert sonographer and have a similar function to that of Pth and fc from

the previous experiment. The tumor microvasculature was much more difficult to manu-

ally segment than the vessel images in the previous section. In addition, despite the probe

being clamped, the sequential nature of the acquisitions resulted in small shifts in the imag-

ing plane between the B-mode and Doppler images, preventing perfect alignment between

them. For these reasons, we performed a qualitative evaluation of the vasculature observed

in B-mode and Doppler.

5.2.5 Doppler Decluttering using B-mode Data

While the main focus of this chapter is on obtaining blood segmentations solely from B-

mode data, Doppler and B-mode processing are not mutually exclusive. The proposed

B-mode processing could also be helpful in decluttering difficult Doppler videos. A full

segmentation is not required for this purpose, rather, the statistic D can be used directly to

ensure that pixels exhibiting correlation in the B-mode intensities are not assigned a color

value. This was accomplished by incorporating a threshold of D < 0.2 into the color pixel

priority mask of a power Doppler acquisition.
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5.3 Results

5.3.1 Vessel Images

The results of the ROC analysis are shown in Figure 5.3. The AUC for Doppler imaging

was 0.97, 0.93, 0.96 for the long axis, short axis, and complex vessel images respectively.

These results are very similar to values reported in the literature for using power Doppler

to classify blood in microvascular ultrasound. For comparison, Pinter et al. [12] performed

ROC analysis on power Doppler of phantom vessels and found AUC ranging from 0.94 for

high vascularity phantom images with blood velocities between 1.35-2.4mm/s to 0.99 for

low vascularity phantom images with blood velocity between 5.4–9.5 mm/s. Furthermore,

this study was performed in phantom images where background motion was minimal and

vessel geometry was simplified to consist of tubes.

The B-mode approach consistently out-performed Doppler with AUC of 0.99, 0.99,

0.97 for the three vessel images. These improvements were statistically significant (p <

0.05) under a block boot-strap test. To visually compare the B-mode and Doppler methods

we show the microvascular segmentations obtained at a FPR=2.5% in Figure 5.4. Power

Doppler flow detection is sensitive to blood velocity and the clutter filter cut-off frequency

must be tuned high enough to reject clutter but still detect low-flow regions. As a result,

several of the small vessels are not visible in the Doppler image (classified as false neg-

atives) and motion artifacts are still visible in echogenic background tissue. In addition,

Doppler had difficulties where there were large variations in blood velocity or direction. In

the long-axis image sequence, the boundary between the upper and lower vessel sections is

segmented poorly, while in the short-axis image, the artery had much higher blood veloci-

ties than the neighboring vein and appeared much larger in Doppler despite the two vessels
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Figure 5.3: ROC analysis of B-mode and Doppler vessel images sequences. The man-
ual segmentation of the long-axis, short-axis and complex vessel images are shown in the
leftmost column. The B-mode and Doppler segmentation parameters were adjusted to cal-
culate the ROC curves shown in the rightmost column. The manual, B-mode and Doppler
segmentations are shown with red indicating blood and blue indicating background. The
segmentations from B-mode and Doppler are shown in the middle two columns at the op-
erating point on the ROC curve with a 2.5% false positive rate. The ROI from these images
are enlarged and compared against the manual segmentations in Figure 5.4.
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being of similar size. Finally, in the complex vessel images, much of the detail around

vessel bifurcations was lost in Doppler but still visible through B-mode processing.

5.3.2 Tumor Xenografts

The results from the ten xenograft images are shown in Figure 5.5. Overall, the B-mode

and Doppler were in close agreement as to the location of major vessels and most of the

microvasculature. In four of the cases, B-mode revealed significantly more detail in the

tumor microvasculature. It is also worth noting that, in B-mode, the blood segmentations

of medium and large sized vessels were neatly contained within their vessel walls. This

is very difficult to achieve in Doppler and most of the larger vessels exhibited blooming

well beyond the vessel walls. Furthermore, motion artifacts adversely affected Doppler,

with three of the images showing substantial false positive regions in the background tissue

surrounding the tumor.

5.3.3 Doppler Decluttering using B-mode Data

A power Doppler acquisition with and without D incorporated into the color pixel priority

mask is shown in Figure 5.6. As expected, the major vessels appear identical since the

same power Doppler processing was performed in each vessel. However, some areas in

the background, especially along tissue boundaries and vessel walls, produced a strong

Doppler signal. The extent of these false positives was reduced by rejecting pixels that

display correlation in their B-mode intensity values.
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Figure 5.4: Comparison of B-mode and Doppler to the manual segmentations. The ROI
from Figure 5.3 are enlarged and the manual segmentations are used as ground truth for the
long axis (top row), short axis (middle row) and complex (bottom row) image sequences.
In these images note that (1) many of the smaller vessels are visible in the B-mode segmen-
tation but are missing and show as false negatives in the Doppler segmentation. (2) Motion
artifacts result in false positives in the echogenic tissue surrounding the vessels in Doppler.
(3) The area where the two main long axis segments meet is better shown in B-mode while
in Doppler this region has larger false positive and false negative areas. (4) In Doppler,
the short-axis vein appears substantially smaller than the neighbouring artery. Both vessels
were of similar size but with different blood velocities. The B-mode method results were
closer to the manual segmentations and showed similar size for the two vessels. (5) B-mode
was better able to preserve vessel bifurcations in the complex vasculature image.
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Figure 5.5: Qualitative comparison of vasculature in B-mode and Doppler images on ten
CAM tumor xenografts. Each ROI is 4.4 mm by 7.0 mm in size and was defined by the
Doppler processing box placed over the tumor. Note that (1) subtle microvasculature
missed by Doppler is detected through B-mode processing. (2) Doppler imaging of the
larger vessels exhibits blooming while in the B-mode the segmented blood is neatly con-
tained within the vessel walls. (3) Highly echogenic tissue sometimes produces motion
artifacts in Doppler that cause it to be falsely classified as blood. (4) One of B-mode im-
ages was corrupted by a scanning artifact that affected the CAM surface but the tumor itself
was not compromised and showed microvasculature agreeing with Doppler. In four of the
videos (a-d) substantially more detail was detected in the tumor microvasculture using the
B-mode processing. Additionally, in two of the videos (h,j), Doppler suffered from severe
motion and blooming artifacts near the tumor mass, which could result in poor estimates of
vascularization. The microvasculature inside the tumor in the remaining four videos was
qualitatively similar, with B-mode processing tending to show slightly more detail in the
smaller microvasculature and less blooming from the larger vessels.
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Figure 5.6: Decluttering power Doppler using B-mode video data. A threshold, D < 0.2,
was incorporated into the color pixel priority mask to better reject motion in the vessel
walls, CAM surface and background tissue (yellow arrows).

5.4 Discussion

Two sets of experiments were performed on CAM models to demonstrate the effectiveness

of the B-mode processing method. In the quantitative experiments on vessel images the

B-mode and Doppler were reconstructed from the IQ data, allowing all processing for both

methods to be performed retrospectively. This enabled the ROC analysis to objectively

compare B-mode and Doppler processing independent of how the tuning parameters are

set. While the Doppler processing produced good results of a quality similar to that re-

ported in the literature, the B-mode processing resulted in a substantial improvement, both

quantitatively in terms of AUC in the ROC analysis and qualitatively providing better visi-

bility of small low-flow vessels, more consistent visualization of vessels with differing flow

rates or directions, and better rejection of motion in the background tissue. These quali-

tative observations were confirmed in ten sets of tumor xenograft images obtained from a
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preclinical study. In addition, this type of B-mode processing can easily be combined with

traditional power Doppler to help reject clutter. This is especially helpful in the vessel walls

where a strong auto-correlated signal is present.

5.5 Conclusion

We proposed a processing method that, when applied to B-mode ultrasound images, can

distinguish between the flowing blood in microvasculature and background tissue. This

method was robust to background tissue motion and substantially outperformed Doppler in

a series of in vivo vessel and tumor images from a CAM model. Processing short 5 second

video clips revealed more detailed vasculature with less clutter from background motion

than conventional power Doppler and is easily incorporated into the workflow of preclinical

studies. This could improve preclinical studies on anti-angiogenic drugs, including anti-

VEGF agents, by providing better blood segmentations for quantifying tumor vascularity.
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Chapter 6

Motion Magnification for Endoscopic

Surgery

This chapter includes material adapted from:

A. Jonathan McLeod, John S.H. Baxter, Sandrine de Ribaupierre, and Terry M. Peters.

Motion Magnification for Endoscopic Surgery. In Proc. SPIE 9036: 90360C-1-8, 2014.

A. Jonathan McLeod, John S.H. Baxter, Uditha Jayarathne, Stephen Pautler, Terry M.

Peters and Xiongbiao Luo. Stereoscopic Motion Magnification in Minimally-Invasive

Robotic Prostatectomy. In CARE 2015. Lecture Notes in Computer Science 9515: 35-45,

2015

6.1 Introduction

One common problem in endoscopic procedures is the identification and sparing of vessels.

When arteries are close to the surface of the tissue, the vessels themselves may be visible

123
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or the tissue might appear to pulsate. While pulsation provides a useful visual cue in iden-

tifying vascularized tissue, it is not always visible in challenging cases or in less than ideal

conditions. Compared with conventional surgery, in endoscopic procedures the identifi-

cation of vessels becomes much more challenging because of the lack of haptic feedback

and limited view angles. Several methods have been proposed to help identify important

vessels during surgery including intraoperative Doppler ultrasound for endoscopic third

ventriculostomy [1], atrial venous malformation resections [2] and robotic prostatectomy

[3]. Intraoperative ultrasound adds considerable complexity to the procedure, especially in

neurosurgical procedures where ultrasound imaging often requires a partial craniotomy or

a disposable ultrasound probe to be inserted through the working channel of the endoscope.

Alternatively, augmented reality systems have been developed that overlay preoperatively

identified vessels on the endoscopic video but require accurate spatial tracking as well as

non-rigid registration with preoperative images or intraoperative ultrasound[4]. Here we

present an alternative approach for identifying vascularization where small periodic mo-

tions are amplified creating a synthetic video in which pulsating tissue is visually enhanced.

This approach would be easily integrated into existing surgical work flow without expen-

sive hardware requirements. Motion magnification was first proposed by Liu et al. [5] using

explicitly tracked feature points to estimate a motion field. More recently, Eulerian video

magnification (EVM)[6, 7] has been developed as an alternative technique that does not

require explicit estimation of the motion field. This approach is advantageous in terms of

simplicity and computational efficiency and can achieve better results with smooth features.

Here, a method based on this technique is developed for endoscopic procedures focusing

on two common surgeries: endoscopic third ventriculostomy and robotic prostatectomy.
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6.2 Eulerian Video Magnification

The object of video magnification is to synthesize a video amplifying small motion. Fol-

lowing the derivation in Wu et al. [6], let the stationary image be f (x) where x = [x1, x2]T

is a spatial position and δ(x, t) is the displacement field at time t. The observed intensity,

I(x, t), in the video is then given by the brightness constancy constraint as:

I(x, t) = f (x + δ(x, t)) (6.1)

The goal of motion magnification is to synthesize a video Î(x, t) where

Î(x, t) = f (x + (1 + α)δ(x, t)) (6.2)

and α is the magnification factor. If the motion is small, the image may be approximated

as being locally linear so that

I(x, t) ≈ f (x) + g(x)δ(x, t) (6.3)

The corresponding approximation for the synthesized video becomes

Î(x, t) ≈ f (x) + (1 + α)g(x)δ(x, t)

≈ I(x, t) + α(I(x, t) − f (x))
(6.4)

where g(x) = [ ∂ f
∂x1

(x), ∂ f
∂x2

(x)] is the gradient of the image.
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Laplacian Pyramid

Directly amplifying all temporal variations in the video, Ī(x, t) = I(x, t) − f (x), as sug-

gested by Equation 6.4 will included many unwanted effects from noise, lighting and other

sources of motion including camera jitter. Instead, spatiotemporal filtering is used to isolate

the variations of the video that occur at the right spatial and temporal frequencies. Wu et al.

[6] used image pyramids to decompose the video frames into successive spatial frequency

subbands. Image pyramids are created by repeatedly applying filtering and sub-sampling

operations to an image so each level in the pyramid contains information at different spa-

tial scales. In a Gaussian pyramid each level is generated by smoothing the previous level

with a Gaussian kernel followed by subsampling. This generates a pyramid where each

level contains lowpass filtered version of the original. A Laplacian pyramid consists of

the differences between consecutive lowpass filtered images in a Gaussian pyramid 6.1. In

this pyramid each level is a bandpass filtered version of the original image. To enhance

motion, Wu et al., processed each level of a Laplacian pyramid independently with a tem-

poral bandpass filter. By using this filtered image, IBP(x, t), in-place of Ī the enhanced

video can be limited to motions occurring at the frequency of interest (ie heart rate). The

magnification factor, α, would be decreased at higher levels to keep linear approximation

in Equation 6.3 valid. After this processing, the Laplacian pyramid was then collapsed by

iteratively upsampling each level and adding it with the bandpass residual from the level

above it. Figure 6.2a shows an overview of this method. Since the Laplacian pyramid

construction/reconstruction and temporal filtering can be expressed as linear operations,

which are associative, identical results can be achieved by applying the temporal filtering

after the pyramid is collapsed instead of independently on each level (Figure 6.2b). This

can reduce the floating point operations and memory requirements for temporal filtering
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Figure 6.1: Image pyramids are used to decompose the frame into different spatial scales
or sub-bands. A Gaussian pyramid is created by repeatedly blurring and downsampling the
image. A Laplacian pyramid can be constructed from a Gaussian pyramid by taking the
difference between consecutive levels.
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Figure 6.2: Eulerian video magnification using a Laplacian pyramid. (a) Each scale pro-
cessed independently as presented in [6]. (b) The same processing pipeline with the tem-
poral filtering performed after the Laplacian pyramid is collapsed. Note that the Laplacian
pyramid reduces to a spatial band-pass filter.

by one-third since only a single image (the same size as the first level in the pyramid with

non-zero α) needs to be processed. More importantly, the entire pyramid processing can

thus be replaced by a single spatial bandpass filter. If desired, this filter could be chosen to

have the same frequency response as the pyramid method. Alternatively, it could be chosen

to maintain the condition proposed by Wu et al., that (1 + α)δ be less than an eighth wave-

length, continuously across all spatial frequencies. We use a difference of Gaussian filter

in place of the pyramid since it can easily be adjusted to remove high spatial frequencies

where the linear approximation breaks down and more noise is present as well as low spa-

tial frequencies which often contain effects due to endoscopic lighting and other unwanted

large scale changes in the image. Visually, a difference of Gaussian filter can produce near

identical results to the pyramid method (Figure 6.3).
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Figure 6.3: The wrist video and supplemental code from [6] were used to to demonstrate
spatial processing using a Laplacian pyramid. Identical intensity values were achieved by
collapsing the pyramid before applying the temporal filtering. The graphs of ∆I = Î−I show
that identical intensity values were obtained by collapsing the pyramid before applying
the temporal filtering. Replacing the pyramid with a bandpass filter produced very similar
results. The time profiles show the pulsation of the ulnar artery after all EVM methods. The
bandpass filtering was visually nearly indistinguishable from the pyramid based methods.
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Spatiotemporal Filtering

We obtained the motion enhanced image, Î(x, t), through the pipeline shown in Figure 6.4.

This pipeline includes spatial band-pass filtering, adaptive temporal filtering and techniques

for artifact reduction.

Figure 6.4: Overview of the adaptive magnification with artifact reduction. For simplicity
the filtering is shown for the intensity channel only, while in this chapter it is performed on
all channels.

The first step in the pipeline is spatial filtering using a difference of Gaussian bandpass

filter with high and low pass standard deviations of σH and σL respectively. This helps

remove the high spatial frequency components over which the linear approximation is not

valid and also large scale changes in lighting conditions, which are not desirable to amplify.

Next, to enhance only the motion due to pulsation, IBP(x, t) is obtained through adaptive

filtering so external knowledge of the heart rate is not required. We used an infinite im-

pulse response filter because of its low memory and computational requirements. The dc

component of the signal is removed using an exponential moving average (EMA) filter and

the adaptive line enhancer (ALE) described in Hush et al. [8] is used to enhance cardiac

frequencies. Figure 6.5 shows the temporal bandpass filtering algorithm.
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Figure 6.5: This figure shows the adaptive bandpass filtering algorithm. The input, I, is
obtained after spatial filtering of the image as described earlier in this section.

The EMA filter is a low pass filter with a transfer function defined by

HEMA(z) =
βEMA

1 − (1 − βEMA)z−1 , (6.5)

where 0 < βEMA < 1. This filter estimates the dc component of the signal which is then

removed before applying the ALE. The ALE utilizes a band pass filter defined by

HALE(z) =

1−r2

1+r2ω − (1 − r2)z−1

1 − ωz−1 + r2z−2 , (6.6)

where r is a constant that determines the bandwidth of the filter and is the tuning parameter,

which is related to the filter’s resonance frequency, γ, by

γ = cos−1 ω

1 + r2 . (6.7)

This filter has the property that z−1HALE(z) = 1 at z = e jγ so that it will perfectly predict

the next value of a purely sinusoidal input. To form the ALE, a one-step delay is applied

to the input and is tuned to minimize the one step prediction error. This is achieved using

the same normalized least mean squares algorithm as in Hush et al. [8]; however, we must
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minimize the sum of the squared errors across all pixels and color channels instead of for a

single channel. The estimate of ω is updated each frame according to

ωt+1 = ωk + µ

∑
p
∑

c εtαk

ψt
, (6.8)

where µ is the stepsize constant, εt is the error in the one step prediction, p and c are

the set of all the pixels and channels, which are to be used in updating ω, and at is an

approximation of the partial derivative of IBP with respect to ωk given by

ak =
1 − r2

1 + r2 Īt−1 + IBP. (6.9)

This approximation leaves out the recursive terms and improves the performance of the

optimization when compared with a recursive expression for the partial derivative. The

step size is normalized by the square of the gradient magnitude, ψk. Low pass filtering of

ψk is used to prevent sudden changes of the step size which could hamper convergence:

ψt = (1 − βALE)ψt−1 + βALE

∑
p

∑
c

a2
t . (6.10)

where 0 < βALE < 1. The convergence of the estimated heart rate along with the effect of

the filtering on moving and static points in the image is shown in Figure 3.
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Figure 6.6: The convergence of the filter frequency is shown (top left). The heart rate
for this video is approximately 80bpm when averaged across the entire video. The effect
of filtering on the intensity signal is shown at the moving and static test points, A and
B respectively (top right). For each of these test points the spatial filtered signal (black
solid line) and the adaptive filtered signal plus dc, IBP + f , (red dashed line) are shown
together in the middle row and the original signal (black solid line) and motion magnified
signal (red dashed line) are shown together in the bottom row. The filter begins to catch the
fundamental frequency after a couple heart beats. A is greatly enhanced through motion
magnification while B remains relatively unchanged.
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Artifact Reduction

A rough estimate of the effects of nonlinearity in video magnification can be obtained from

the quadratic approximation:

I(x, t) ≈ f (x) + g(x)δ(x, t) +
δ(x, t)T H(x)δ(x, t)

2
, (6.11)

where H(x) =


∂2 f
∂x12

∂2 f
∂x1∂x2

∂2 f
∂x1∂x2

∂2 f
∂x22

 is the Hessian of the image. When the linear processing in

Equation 6.4 is applied to enhance motion, the synthesized video becomes:

Î(x, t) ≈ I(x, t) + α(I(x, t) − f (x))

≈ f (x) + (1 + α)
(
g(x)δ(x, t) +

δ(x, t)T H(x)δ(x, t)
2

)
,

(6.12)

while the quadratic estimate for the enhanced video according to Equation 6.11, Îq(x, t),

would be:

Îq(x, t) ≈ f (x) + (1 + α)g(x)δ(x, t) +
(1 + α)2δ(x, t)T H(x)δ(x, t)

2
, (6.13)

leading to an error, ξ:

ξ ≈ Î(x, t) − Îq(x, t) = −
α(1 + α)δ(x, t)T H(x)δ(x, t)

2
. (6.14)

This error takes on a maximum when δ(x, t) is in the direction of the principle eigenvector

of the Hessian:

|ξ|max ≈
α(1 + α) |λ0((x)| ‖δ(x, t)‖2

2
. (6.15)
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Weighting the local gain at each pixel location to penalize high absλ0 (principle eigenvalue

of the Hessian) can reduce the error. The gain α can be replaced by its local version αlocal(x)

where K is an arbitrary constant:

αlocal = α e−K|λ0(x)| (6.16)

This is especially beneficial in removing the overshoot artifacts near high contrast regions.

In addition to the local weighting, it is useful to threshold the intensities to within the

range found in a local neighborhood, N, in the original image. Doing so is consistent with

the brightness constancy constraint, assuming the amplified displacement falls within the

neighborhood, and ensures that the intensities do not become too extreme in the worst over-

shoot artifacts. These techniques for reducing artifacts in the magnified video are shown in

Figure 6.7.
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Figure 6.7: A frame from the original video is shown along with corresponding frames
from the motion magnified video after each stage of artifact reduction. An enlarged view
of a small region in the image is included with white arrows denoting prominent artifacts.
Local weighting of the gain reduces the worst artifacts. Finally, thresholding the pixel
values to be within the range exhibited by their local neighborhood helps restore the overall
brightness in the highlights and shadows. This allows the motion of pulsating structures to
be enhanced without large distortions in their intensity and color.

Results

A MATLAB implementation of the described algorithm was run on videos acquired from

two procedures that could benefit from video magnification, endoscopic third ventricu-

lostomy (ETV) and robotic prostatectomy. Both of these videos were processed with the

same parameters, except for the gain α. Since the prostatectomy procedure had consider-

ably less motion than the ETV, it required a higher gain for the desired pulsation to become

visible. The parameters used for the processing are shown in Table 6.1.

Table 6.1: Parameters for motion magnification

α σH σL βEMA r µ βALE K N
ETV 5 50 1.5 150 0.98 1e-4 120 150 7x7

Prostate 20 50 1.5 150 0.98 1e-4 120 150 7x7
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Endoscopic Third Ventriculostomy

Endoscopic third ventriculostomy (ETV) is a common procedure used to treat hydro-

cephalus. In this procedure, the surgeon must fenestrate the floor of the third ventricle

between the basilar artery and the clivus. In most patients, the basilar artery is clearly

visible through the translucent floor of the third ventricle in the endoscopic video but in

some cases the ventricular floor becomes too thick or opaque for the basilar artery to be

identified. In these cases there is an increased risk of injury to the basilar artery causing

intraventricular hemorrhaging. Many different techniques have been proposed to attempt to

deal with opaque ventricular floors, including the use of intraoperative ultrasound [1], but

none have seen widespread adoption. If the basilar artery cannot be located, the surgeon

will often abort the procedure and install a shunt instead. A system using motion magni-

fication to enhance the pulsation of the basilar artery would be very useful in such cases.

This technique would not interrupt the surgical work flow and could be activated only when

needed for challenging cases. Figure 6.8 shows the results of video magnification applied

to endoscopic video acquired during surgery. The enhanced pulsation makes the basilar

artery much more prominent making it easier to locate and avoid. This effect is very visible

in the processed video file.

Robotic Prostatectomy

Nerve-sparing robotic prostatectomy is another procedure that could benefit from motion

magnification. Locating the neurovascular bundles can be challenging and pulsation is a

valuable cue for identifying these structures. Tewari et al. used pulsation to identify neu-

rovascular bundles during nerve sparing procedures and stressed the importance of thor-

oughly removing all blood from the surgical field and using an endoscope with appropriate
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Figure 6.8: The endoscopic video is shown with (bottom) and without (top) motion mag-
nification. The first three columns on the left cover a single cardiac cycle with the leftmost
frames being acquired during diastole, the middle frames during systole, and the right
frames in diastole again. On the far right are the color difference images between systole
and diastole with the absolute value of the RGB intensity differences enhanced by a factor
of 2. The motion magnified difference image shows a brighter region along the basilar
artery (white arrows) and smaller vessels indicative of motion.

magnification as the pulsation is very subtle [9]. Motion magnification could aid in identi-

fying the neurovascular bundles more easily and in less ideal conditions. This method was

applied to an endoscopic video acquired during a robotic prostatectomy where the pulsa-

tion is almost imperceptible (Figure 6.9). After magnification the pulsation of even small

vessels becomes apparent.

6.3 Future Directions

6.3.1 Identification of Prostatic Artery in Robotic Prostatectomy

While the preliminary investigation of EVM for endoscopic video appears promising there

is still considerable work to be done before such a system is ready for clinical use. We are
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Figure 6.9: A single frame from the endoscopic video of the prostatectomy is shown on
the left. The white line intersects the area where the neurovascular bundles are located (en-
larged on right). While the original video appears almost completely stationary, a pulsatile
motion is visible in the neurovascular area. This can be seen from the time-profile (bottom)
and is apparent in the motion magnified video. A sub-region (yellow box) was selected
where pulsatile motion was most visible in the surgical field. This sub-region was used
for updating the frequency parameter while the bandpass filtering was applied to the entire
frame to enhance pulsatile motion.
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currently conducting a more in depth study of robotic prostatectomy. In particular, we are

interested to see if EVM can improve the saliency of the prostatic artery. These arteries

are located medial to neurovascular bundles and can be used as landmarks during nerve-

sparing procedures [10]. Although the prostatic artery can be difficult to identify, when

the resection plane is medial to neurovascular bundle the amount of residual nerve tissue

in the excised prostate is greatly decreased [10]. Currently, twenty one cases have been

recorded for retrospective analysis. However, we need to ensure that the methods used

produce real-time high quality video that will be useful to the surgeon.

6.3.2 Stereo Endoscopy

Robotic prostatectomy with the da Vinci system uses a stereo endoscope to provide the

surgeon with a sense of depth. It is important to ensure that our processing can be applied

to stereo video so it can be used by the surgeon without interfering with workflow. The

equations for motion magnification were derived based on amplifying 2D displacements in

a 2D image. For processing stereoscopic video we want to ensure that the synthesized left

and right frames are consistent with amplifying the 3D motion of the object being imaged.

Let z = [z1, z2, z3]T be a point in 3D space that is mapped to x by the camera projection

operator. If z moves according to the displacement field δ3D then the linear approximation

in Equation 6.3 becomes

I(x, t) ≈ f (x) + g(x) Jz→x δ3D(z, t), (6.17)
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where Jz→x is the Jacobian of the camera projection. Thus, Equation 6.4 becomes

Î(x, t) ≈ f (x) + (1 + α)g(x) Jz→x δ3D(z, t)

≈ I(x, t) + α(I(x, t) − f (x)).
(6.18)

Applying EVM to any camera projection image is thus consistent with magnifying the

underlying 3D motion so long as the camera projection can be approximated as linear and

the 3D surface and deformation field are continuous with no self-occlusions. The projection

for a simple pinhole camera model with z3 perpendicular to the imaging plane is

[x1x2]T = [
f z1

z3
,

f z1

z3
]T , (6.19)

which is linear for δ3D(z, t) << z3. This assumption would only be broken if the motion

being magnified involved spatial displacements similar in size to the distance between the

camera and the target which is antithetical to our purposes of amplifying small, nearly

imperceptible motions.

6.3.3 Real-Time Local Phase Processing

One of the main challenges with the EVM is its sensitivity to extraneous sources motion.

Phase based variants of EVM [7, 11] amplify changes in the local image phase instead of

the raw intensity values. These approaches have a couple of advantages over linear EVM.

Displacements can be extrapolated over a much larger range than when using raw intensity

[7]. Changes in local phase relate directly to the displacement field as phase shifts in the

frequency domain are equivalent to translations in the spatial domain. This allows more

sophisticated analysis of the motion to be performed such as masking out large displace-
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ments [7] or finding regions with high spatial divergence corresponding to radial distention

of an artery [12]. However, local phase processing is more intensive than intensity based

EVM and, because computing local phase is non-linear and only valid over a narrow spa-

tial frequency band, the pyramid processing cannot be collapsed. While local phase EVM

was originally developed using orientated filter banks [7], the Reisz transform can also be

used for motion magnification [11]. We implemented such a GPU accelerated method that

could process stereo full resolution (1280x1024) video at 30 fps, producing high-quality

videos where subtle pulsations are greatly enhanced. By masking out large changes in lo-

cal phase, most of the artifacts due to unwanted large motions were eliminated. In addition,

subtle organ motion was removed by band-pass filtering the local phase at each level of the

pyramid to eliminate large scale motions while retaining more of the localized pulsation

of small vessels. This is especially helpful in enhancing pulsation in the prostatic artery

as the lateral walls of the prostate visibly pulse with the cardiac cycle. This extraneous

motion is larger than that of the prostatic artery, occurs at the same frequency, and domi-

nates the results if not suppressed. For the real-time implementation, the processed stereo

video was displayed back to the user on the da Vinci Xi system using TilePro (an auxiliary

window which the surgeon could bring up on demand underneath the original video feed).

In porcine studies, vessels in the gall-bladder region were used to demonstrate this method

(Figure 6.10) as pigs lack prostates.

6.4 Conclusions

Motion magnification shows potential for identifying vessels in a variety of endoscopic or

laparoscopic procedures. In the two examples described here, EVM was able to greatly en-

hance the motion of the basilar artery during endoscopic third ventriculostomy and reveal
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the almost imperceptible pulsation around the neurovascular bundles in robotic prostatec-

tomy. This could help surgeons identify these important structures, thus reducing compli-

cations and improving patient outcomes. Our future work is focused on validated real-time

stereo processing for robotic prostatectomy where this method has the potential to improve

the visibility of the prostatic artery and help spare neurovascular tissue.
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Figure 6.10: Local phase motion magnification running in real-time (30 fps with full reso-
lution stereo video) in a porcine study. Pulsation of the arteries was greatly enhanced while
the the overall image quality was preserved. This pulsation can be seen in the two time
profiles taken across arteries.
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croneurosurgical management of small arteriovenous malformation: role of neuron-

avigation and intraoperative doppler sonography. Minimally Invasive Neurosurgery,

50(03):163–169, 2007.

[3] Misop Han, Chunwoo Kim, Pierre Mozer, Felix Schäfer, Shadie Badaan, Bogdan
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Chapter 7

Conclusions

The main objective of this thesis is to use temporal information from intraoperative imaging

to improve image guidance. Chapter 2 focused on acquiring and visualizing the intraop-

erative ultrasound video for positioning tasks in beating heart cardiac surgery. Here, I

integrated an ultrasound probe directly into tools for beating heart aortic and mitral valve

surgery. In the case of TAVI, the integrated ultrasound allowed the final positioning and

monitoring of the expandable valve-stent as it was deployed in the native aortic valve.

When combined with augmented reality, this imaging achieved similar variability in de-

ployment depths as conventional fluoroscopic guidance in a phantom model. When used

for mitral valve repair using NeoChord, the integrated ultrasound was displayed within the

augmented reality guidance system allowing the live ultrasound to be augmented with vir-

tual representations of the valve annuli, previously deployed sutures, and NeoChord jaws.

This aided in leaflet capture by providing the necessary context and real-time imaging to

evenly deploy sutures along the posterior leaflet.

The remaining chapters dealt with developing techniques to process intraoperative video

in order to extract hidden information. Chapters 3 and 4 dealt with periodicity detection

148



www.manaraa.com

149

in medical videos. Chapter 3 proposed a method for detecting dural pulsations in spinal

ultrasound. These pulsations can provide a valuable cue when performing epidural injec-

tions and spinal anesthesia as they appear when the anesthesiologist has a clear path to the

epidural space. An extended Kalman filter was used to estimate the frequency and ampli-

tude of pulsations so they could be detected automatically. This method ran in real-time

on a commercial ultrasound system and was used in a series of mock-epidural injections

in a phantom environment where it decreased the number of needle insertion attempts and

tortuosity of the needle path when compared with regular ultrasound guidance. In addition,

this processing was included in an augmented reality environment to show how automat-

ically detected dural pulsation could be spatially related to virtual models of the tracked

needle and spinal anatomy. Adding real-time image processing to tracked ultrasound in

an augmented reality environment is of particular interest. While the virtual objects add

a great deal of context that help interpret the ultrasound image, they also add clutter and

reduce the screen space available for the ultrasound image (which is then often viewed at

an oblique angle in the augmented reality environment). This makes it difficult to iden-

tify subtle cues such as dural pulsation in the augmented reality guidance. However, by

extracting these cues automatically, the best of both worlds can be achieved with virtual

models for the spine and tracked needle and the automatic processing highlights where the

dural pulsations show a clear path through the interlamanar space all shown within a single

augmented reality environment.

Chapter 4 developed a more general framework, based on dynamic linear modeling, for

analyzing periodicity in videos. Like the extended Kalman filtering, this approach relied

on state-space modeling of variations in pixel intensity to estimate physically meaning-

ful parameters such as frequency and amplitude of pulsation. However, extended Kalman
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filtering for state estimation requires careful tuning and can easily be trapped in local min-

ima. The dynamic linear modeling approach finds maximum likelihood estimates of the

parameters. Furthermore, by fitting models both with and without a periodic component, a

likelihood ratio test could test for the presence of periodicity. In addition to detecting dural

pulsations in spinal ultrasound, the same dynamic linear model was used for both heart

rate estimation and perfusion mapping from natural video and ventilation imaging from

free-breathing MRI to demonstrate the versatility of this approach.

While the previous two chapters dealt with detecting periodicity in videos, other kinds

of statistical analysis can be used to recover hidden temporal information. Chapter 5

demonstrated how blood flow can be segmented from B-mode microvascular ultrasound

video. In these videos, flowing blood was effectively decorrelated from one frame to the

next while background tissue motions resulted in highly autocorrelated pixel intensities.

Using Bartlett’s test, a non-parametric, frequency domain, statistical method, blood could

distinguished from background clutter. From five second B-mode videos acquired in a

chick embryo model this method achieved vessel segmentations with better area under the

ROC curve than power Doppler. Qualitatively, this type of processing also revealed more

microvasculature inside tumor xenografts which would help in studies of anti-angiogenic

cancer drugs.

Chapter 6 dealt with processing endoscopic video using Eulerian video magnification to

enhance the pulsation of important arteries. Surgeons already rely on pulsation to find im-

portant vessels. Enhancing this pulsation provides natural videos that are easily interpreted

by the surgeon where arteries are more salient. This chapter demonstrated how adaptive

temporal filtering could be used to track the patient’s heart rate, automatically enhancing

motions at the cardiac frequency. Additionally, I developed techniques for artifact reduc-
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tion that preserved the quality of the enhanced videos. My main focus for future work

is to apply these techniques to help identify the prostatic artery in nerve sparing robotic

prostatectomy. Towards this end, I implemented GPU accelerated phase based motion

magnification capable of processing full resolution stereo video at 30 frames per second.

This technique was demonstrated in animal labs and further validation is ongoing through

retrospective study on video acquired from human prostatectomy cases.

It is my hope that by developing the techniques described in this thesis, guidance for

minimally invasive interventions can be improved. This thesis demonstrated how ultra-

sound could be integrated into tools for cardiac valve surgery that, together with augmented

reality, can be used to position and monitor the deployment of TAVI prosthetic valves or

grasp flailing leaflets during beating heart mitral valve repair. Furthermore, it showed how

processing videos, acquired from a wide range of medical imaging modalities, could ex-

tract hidden temporal information. This information was used to detect dural pulsation

from lumbar spine ultrasound in order to guide epidural injections and help surgeons iden-

tify critical arteries in endoscopic procedures. These advances have the potential to reduce

complications and improve patient outcomes for a wide range of interventions.
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